Học sinh khối 6 khi xếp thành hàng 2, hàng 3, hàng 5 đều thừa 1 bạn. Hỏi
số học sinh đó bằng bao nhiêu, biết rằng số học sinh trong khoảng 180 đến 200 bạn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh là x
Theo đề, ta có; \(x-1\in BC\left(2;3;5\right)\)
mà 180<=x<=200
nên x-1=180
=>x=181
Gọi số học sinh là x
Vì x chia 2 ; 3 ; 5 đều dư 1 và 180 bé hơn hoặc bằng x bé hơn hoặc bằng 200
=> x-1 thuộc BC( 2 ; 3 ; 5 ) và 180 bé hơn hoặc bằng x bé hơn hoặc bằng 200
Mà 2 ; 3 ; 5 đều là số nguyên tố nên khi ta phân tích ra thừa số nguyên tố , ta vẫn giữ nguyên
=> BCNN( 2 ; 3 ; 5 ) = 2 * 3 * 5 = 30
=> BC( 2 ; 3 ; 5 ) = B( 30 ) = { 0 ; 30 ; 60 ; 90 ; 120 ; 150 ; 180 ; 210 ; ... }
Mà x-1 thuộc BC( 2 ; 3 ; 5 ) và 180 bé hơn hoặc bằng x bé hơn hoặc bằng 200
Suy ra x - 1 = 180 => x = 181
Vậy số học sinh là 181 học sinh
gọi số học sinh khối 6 của trường đó là x (x\(\in\)N*;100\(\le\)x\(\le\)150; đơn vị: học sinh)
TĐB: số học sinh khi xếp thành hàng 2, hàng 3, hàng 5 đều thừa 1 bạn
=>(x-1)chia hết cho 2;3;5
=>(x-1)\(\in\)BC(2;3;5)={0;30;60;90;120;150;180;...}
=>x\(\in\){1;31;61;91;121;151;181;...}
mà 100\(\le\)x\(\le\)150
=>x=121 học sinh
vậy khối 6 trường đó có 121 học sinh
Gọi số học sinh là x ( 100 ≤ x ≤ 125 )
Khi xếp thành 2 hàng, 3 hàng, 5 hàng thừa 1 bạn
=> x-1 chia hết cho 2, 3, 5
=> x-1 ∈ BC (2, 3, 5) = { 0; 30; 60; 90; 120; 150; 180; 210;..; }
=> x ∈ { 1; 31; 61; 91; 121; 151; 181; 211;..; }
mà 100 ≤ x ≤ 125
=> x = 121
Gọi số học sinh khối 6 là x ( x thuộc N* , 100<x<125 )
Theo đề bài : Khi xếp hàng 2 , hàng 3 , hàng 5 đều thừa 1 bạn nên ta có :
( x - 1 ) chia hết cho 2
( x - 1 ) chia hết cho 3
( x - 1 ) chia hết cho 5
=> ( x - 1 ) thuộc BC(2,3,5)
Ta có : 2 = 2
3 = 3
5 = 5
BCNN(2,3,5) = 2.3.5 = 30
=> BC(2,3,5) = B(30) = {0;30;60;90;120;150;...}
Mà 100<x<125 nên ( x - 1 ) = 120
Ta có : x - 1 = 120
x = 120 + 1
x 121
Vậy số học sinh khối 6 là 121
Gọi số học sinh trường đó là a:
Điều kiện :
a : 10 dư 2
a : 12 dư 2
a : 18 dư 2
Vậy a - 2 chia hết cho 10,12,18 .. a-2 thuộc BC(10,12,18)
Ta có :
10 = 2.5
12 = 22.3
18 = 2.32
BCNN(10,12,18) = 22. 32.5 = 180
BC(10,12,18) = B(180) = {0;180;360; 540;720}
Mà 500< a <600
=> a - 2 = 540
=> a = 542
Vậy số học sinh trường đó là 542
Đ/s: 542 học sinh
Gọi số học sinh trường đó là x (học sinh) ; (500 \(\le x\le600;x\inℕ^∗\))
Ta có : \(\hept{\begin{cases}x:12\text{ dư 2}\\x:10\text{ dư 2}\\x:18\text{ dư 2}\end{cases}\Rightarrow\hept{\begin{cases}x-2⋮12\\x-2⋮10\\x-2⋮18\end{cases}}}\Rightarrow x-2\in BC\left(12;10;18\right)\)
Phân tích ra thừa số nguyên tố ta được :
12 = 3.22
10 = 2.5
18 = 32.2
=> BCNN(12;10;18) = 22.32.5 = 180
=> \(x-2\in B\left(180\right)\)
=> \(x-2\in\left\{0;180;360;540;720\right\}\)
=> \(x\in\left\{2;182;362;542;722;...\right\}\)
Kết hợp điều kiện => x = 542
Vậy trường đó có 542 học sinh
Gọi số học sinh là a
=> a - 5 chia hết cho 12;15;18
12=2^2.3 ; 15 = 3.5 ; 18 = 2.3^2
=> BCNN(12;15;18) = 2^2.3^2.5 = 180
Vậy a thuộc {5;185 ; 365 ; 545 ; ..}
200 < a < 400 => a = 365
Giải :
Gọi số HS khối 6 là : a. ĐK : \(a\inℕ^∗;180\le a\le200\)
Vì số HS khi xếp thành hàng 2, hàng 3, hàng 5 đều thừa 1 bạn nên ta có : \(\hept{\begin{cases}a-1⋮2\\a-1⋮3\\a-1⋮5\end{cases}}\)
\(\Rightarrow a\in BC\left(2,3,5\right)\)
Ta có : \(2=2\)
\(3=3\)
\(5=5\)
\(\Rightarrow BCNN\left(2,3,5\right)=2.3.5=30\)
\(\Rightarrow BC\left(2,3,5\right)=B\left(30\right)=\left\{0;30;60;90;120;150;180;210;...\right\}\)
Mà \(180\le a-1\le200\)
\(\Rightarrow a-1=180\Rightarrow a=181\)
Vậy số HS khối 6 là 181.