K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

Giải thích các bước giải:

 a) Ta có:

Do CH là đường cao của tam giác ABC nên CH vuông góc với AB mà theo giả thiết thì BK cũng vuông góc với AB nên suy ra CH song song với BK.

Tương tự chứng minh trên ta cũng có: BH song song với CK

Tứ giác BHCK có : BH song song CK và CH song song BK nên tứ giác BHCK là hình bình hành.

b) Theo kết quả của phần A ta có:

BHCK là hình bình hành có 2 đường chéo BC và HK ⇒ BC và HK cắt nhau tại trung điểm mỗi đường (Tính chất của hình bình hành) mà M là trung điểm BC suy ra M là trung điểm HK ⇒ H,M,K thẳng hàng.

Xét tam giác AHK có: M là trung điểm HK, I là trung điểm AK

⇒ MI là đường trung bình của tam giác AHK

⇒ MI song song với AH và MI=1/2 AH.

mik ko biết đúng hay ko nữa

13 tháng 11 2022

Lời giải làm sao ?

25 tháng 2 2022

a) ta có A đối xứng với F qua O => O là trung điểm của AF 

=> BO là trung tuyến của AF (1) 

=> CO là trung tuyến của AF (2) 

ta lại có O là giao điểm của 3 đường trung trực của tam giác ABC 

=> OA = OB =OC (3)

từ 1-2-3 => Góc ABF = góc ACF = 90 

=> AB vuông góc với FB 

AC vuông góc với FC 

mà CH vuông góc AB => CH // BF 

BH vuông góc với AC => BH//CF 

Xét tứ giác BHCF có 

CH // BF

BH//CF 

=> HBFC là hình bình hành (dhnb) có HF và BC là 2 đường chéo 

M là trung điểm của BC 

=> M là trung điểm của HF => 3 điểm H,M,F thẳng hàng ; HM =FM 

=> H đối xứng với F qua M 

b) Xét tam giác AHF có M là trung điểm của HF O là trung điểm AF 

=> OM là đường trung bình 

=> OM =1/2AH <=> AH/OM=2

vì H là giao điểm của 2 đường cao BD và CE nên H là trực tâm => AH vuông góc BC

ta lại có OM vuông góc với BC ( M là trung điểm của BC ; O là giao 3 đường trung tuyến => OM là đường trung tuyến của BC )

=> OM // AH => góc HAG =góc GMO (2 góc so le trong)

xét tam giác AHG và tam giác MOG 

có :góc HGA =góc  MGO (2 góc đối đỉnh)

góc HAG =góc GMO (cmt) 

=> đồng dạng (gg) => AH /OM = AG/MG =2 

<=> AG=2MG <=> AM = AG + MG =3MG

<=> AG/AM =2/3 mà AM là tiếp tuyến của BC ( m là trnug điểm BC)

=> G là trọng tâm của tma giác ABC 

 

25 tháng 2 2022

sửa lại AM là trung tuyến nhé

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)