K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

A C B D M

a, xét tam giác CAB và tam giác DAB có : AC chung

AC = AD (gt)

^CAB = ^DAB =90

=> tam giác CAB = tam giác DAB (2cgv)

=> ^CBA = ^DBA (đn) mà BA nằm giữa BA và BD

=> BA là pg của ^CBD (đn)

b, ^CBA = ^DBA (câu a)

^CBA + ^CBM = 180 (kb)

^DBA + ^DBM  = 180

=> ^CBM = ^DBM

tam giác CAB = tam giác DAB (câu a) => BC = BD (Đn)

xét tam giác CBM và tam giác DBM có : BM chung

=> tam giác CBM = tam giác DBM (c-g-c)

GT:cho tam giác vuông Abc ( a vuông)

Ac=Ad ; dac thẳng hàng;d khác c

KL: BA là tia phân giác của góc cbd

tam giác MBC=MBD

a, xet tam giác acb và tam giác adb có

ac=ad ( giả thuyết)

góc CAB=BAD ( đều = 90 độ )

AB cạnh cung

nên tam giác acb = tam giác adb (c-g-c)

mk am giác acb = tam giác adb 

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà ba nằm giữa 

=> ba là tia phân giác của góc cbd

b, xét tam giác MBCvàMBD có

mb cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM

CB=BD (cm a)

nên tam giác MBC=MBD (c-g-c)

tích mình đi

ai tích mình 

mình tích lại 

thanks

28 tháng 7 2018

k mk đi mk k lại

hình bn tự vẽ nhé!!!!

a, Xét \(\Delta ABC\)và \(\Delta ABD\)có:

\(AC=AD\left(gt\right)\)

\(\widehat{BAC}=\widehat{BAD}\left(=90^o\right)\)

\(AB\)cạnh chung

\(\Rightarrow\Delta ABC=\Delta ABD\left(c-g-c\right)\)

\(\Rightarrow\widehat{CBA}=\widehat{DBA}\)( 2 góc tương ứng )

Mà \(BA\)nằm giữa \(\widehat{CBD}\)

Suy ra \(BA\)là tia phân giác của \(\widehat{CBD}\)

b, Ta có: \(\widehat{DBA}+\widehat{DBM}=180^o\)( 2 góc kề bù)

        và \(\widehat{CBA}+\widehat{CBM}=180^o\)( 2 góc kề bù )

mà \(\widehat{CBA}=\widehat{BBA}\left(cmt\right)\)

\(\Rightarrow\widehat{DBM}=\widehat{CBM}\)

Xét \(\Delta MBD\)và \(\Delta MBC\)có:

\(DB=CB\left(\Delta BDA=\Delta BCAcmt\right)\)

\(\widehat{DBM}=\widehat{CBM}\left(cmt\right)\)

\(BM\)cạnh chung

\(\Rightarrow\Delta MBD=\Delta MBC\left(c-g-c\right)\)

hok tốt!!

GT:cho tam giác vuông Abc ( a vuông)

Ac=Ad ; dac thẳng hàng;d khác c

KL: BA là tia phân giác của góc cbd

tam giác MBC=MBD

a, xet tam giác acb và tam giác adb có

ac=ad ( giả thuyết)

góc CAB=BAD ( đều = 90 độ )

AB cạnh cung

nên tam giác acb = tam giác adb (c-g-c)

mk am giác acb = tam giác adb 

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà ba nằm giữa 

=> ba là tia phân giác của góc cbd

b, xét tam giác MBCvàMBD có

mb cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM

CB=BD (cm a)

nên tam giác MBC=MBD (c-g-c)

a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ

b: ΔÂBC cân tại A

mà AM là trung tuyến

nen AM vuông góc với BC

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

=>AC//BD

a: Xét ΔANM và ΔACB có 

AN/AC=AM/AB

\(\widehat{NAM}=\widehat{CAB}\)

Do đó: ΔANM\(\sim\)ΔACB

Suy ra: \(\widehat{ANM}=\widehat{ACB}\)

hay MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

mà MB=NC

nên MNBC là hình thang cân

b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

18 tháng 9 2018

Hình vẽ bn tự vẽ

Vì tam giác ABC đều nên góc BAC=60 độ

Mà góc EAD=góc BAC

Suy ra: góc EAD=60 độ

Ta lại có: AE=AD(gt)

Suy ra: tam AED đều có DM là đg trung tuyến

Suy ra DM cũng là đường cao

Xét tam giác vuông DMC có:

\(MP=\frac{1}{2}CD\)(1)

Tương tự: CN vuông góc AB

Xét tam giác vuông CND có: 

\(NP=\frac{1}{2}CD\)(2)

Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh

Suy ra: CD=BE

Mà tam giác AEB có: MN là đường trung bình

Suy ra: \(MN=\frac{1}{2}BE\)

Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)

Từ (1);(2) và (3)

Vậy tam giác MNP đều

Chúc bn học tốt.

Mik đi hc đến 8h30 tối mới về nên làm hơi trễ