K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tính AM

Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(BC^2=AB^2+AC^2\)

hay \(BC^2=6^2+8^2=100\)

\(BC=\sqrt{100}=10cm\)

Ta có: AM là đường trung tuyến ứng với cạnh huyền BC của ΔABC vuông tại A(gt)

\(AM=\frac{BC}{2}\)(định lí 1 áp dụng hình chữ nhật vào tam giác vuông)

hay \(AM=\frac{10}{2}=5cm\)

Vậy: AM=5cm

b) Tứ giác ABCD là hình gì?

Xét tứ giác ABCD có

M là trung điểm của đường chéo BC(AM là đường trung tuyến ứng với cạnh BC của ΔABC)

M là trung điểm của đường chéo AD(A và D đối xứng nhau qua M)

Do đó: ABCD là hình bình hành(dấu hiệu nhận biết hình bình hành)

Hình bình hành ABCD có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)

nên ABCD là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

c)

*Tính chu vi của hình chữ nhật ABDC

\(C_{ABDC}=\left(AB+AC\right)\cdot2=\left(6+8\right)\cdot2=28cm\)

*Tính diện tích của hình chữ nhật ABDC

\(S_{ABDC}=AB\cdot AC=6\cdot8=48cm^2\)

Vậy:

-Chu vi hình chữ nhật ABDC là 28cm

-Diện tích hình chữ nhật ABDC là 48cm2

d) Để hình chữ nhật ABDC là hình vuông thì AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì hình chữ nhật ABDC là hình vuông

9 tháng 8 2021

a/ Xét △ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AM là đường trung tuyến của △ABC vuông tại A

\(\Rightarrow AM=MB=MC=\dfrac{BC}{2}\)

\(\Rightarrow AM=\dfrac{10}{2}=5\left(cm\right)\)

Vậy: \(AM=5cm\)

==========

b/ Tứ giác ABNC là hình chữ nhật vì:

- M là trung điểm của BC (gt) và AN (N đối xứng với A qua M)

⇒ ABNC là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)

- ABNC có \(\hat{A}=90\text{°}\left(gt\right)\) 

Vậy: ABNC là hình chữ nhật (Hình bình hành có một góc vuông là hình chữ nhật)

==========

c/ Ta có:

\(IM=IK\left(gt\right);\hat{MIC}=90\text{°}\left(gt\right)\)

⇒AC là đường trung trực của MK \(\left(1\right)\)

- Mặt khác: 

-Xét △CIM và △AIM có:

 + \(\hat{MIC}=\hat{MIA}=90\text{°}\left(gt\right)\)

 + \(IM\text{ }chung\)

 +\(AM=MC\) (AM là trung tuyến của △ABC vuông tại A)

⇒ \(\text{△CIM = △AIM(c.h-c.g.v)}\)

\(\Rightarrow IA=IC\)Mà \(\hat{MIC}=90\text{°}\)

⇒MK là đường trung trực của AC \(\left(2\right)\)

Từ (1) và (2). Vậy: Tứ giác AMCK là hình thoi (Tứ giác có hai đường chéo là đường trung trực của nhau là hình thoi)

 

 

9 tháng 8 2021

cảm ơn bạn nhìu 

23 tháng 2 2021

(x-5) (x-7)=0

16 tháng 12 2021

a: Xét tứ giác ANMC có

MN//AC

MN=AC

Do đó: ANMC là hình bình hành

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.

a: BC=20cm

=>AM=10cm

b: Xét tứ giác AEBM có 

D là trung điểm của AB

D là trung điểm của ME

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi

5 tháng 1 2022

a: BC=20cm

=>AM=10cm

b: Xét tứ giác AEBM có

D là trung điểm của AB

D là trung điểm của ME

Do đó: AEBM là hình bình hành

mà MA=MB

nên AEBM là hình thoi