Tìm các số nguyên tố p,q và m,n nguyên dương sao cho p2m +q2n là số chính phương.
Giúp mình với! Mình cần gấp ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
Ta có: (3n- 4) + (5n – 3) = 8n– 7 là số lẻ, suy ra: trong hai số trên phải có một số chẵn và một số lẻ.
– Nếu 3n– 4 chẵn thì 3n– 4 = 2 ⇔ n = 2 ⇒ 4n– 5 = 3 và 5n– 3 = 7 đều là các số nguyên tố.
– Nếu 5n– 4 chẵn thì 5n– 3 = 2 ⇔ n = 1 ⇒3n – 4 = -1 (loại)
Vậy n= 2 là thỏa mãn.
Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.
a) xét các số nguyên tố p như sau:
+) xét p=2 => p++2=4 ( là hợp số, loại)
+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)
+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)
- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3
=> p+2 là hợp số( trái với đề, loại)
- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp ( trái với đề, loại)
vậy p=3.
b) ta xét các số nguyên tố p như sau:
+) xét p=2 =>p+14=16 ( là hợp số, loại)
+) xét p=3=> p+1=4 ( loại)
vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố)
=> không tìm được số nguyên tố thỏa mãn.
vậy không tìm được số nguyên tố thỏa mãn.
k cho mình nha!
đặt \(p^{2m}+q^{2m}=a^2\)
Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1
\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2
\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )
\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2
giả sử p = 2
\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)
\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)
\(\Rightarrow q^n⋮2\)
\(\Rightarrow q⋮2\)
\(\Rightarrow q=2\)
Thay p = q = 2 vào, ta được :
\(4^m+4^n=a^2\)
giả sử \(m\ge n\)
Đặt \(m=n+z\)
Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)
vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương
Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm
Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.
Nếu ai cần thì cứ nhắn tin vs mik nha.