cho a và b thỏa mãn điều kiện: \(a^3-3ab^2=46\)
\(b^3-3a^2b=9\)
tính giá trị của biểu thức P=a2+b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Đáp án B
3 a = 5 b = 1 3 c 5 c ⇔ a log 3 15 = b log 3 15 = - c log 15 15 ⇔ a 1 + log 3 5 = b 1 + log 5 3 = - c
Đặt t = log 3 5 ⇒ a = - c 1 + t b = - c 1 + 1 t = a t ⇒ a = - c 1 + a b ⇔ a b + b c + c a = 0
⇒ P = a + b + c 2 - 4 a + b + c ≥ - 4 . Dấu bằng khi a + b + c = 2 a b + b c + c a = 0 , chẳng hạn a = 2,b = c = 0.
Ta có:
\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=196\)
\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=169\)
Lại có:
\(\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=27\)
\(\Leftrightarrow a^6+6a^4b^2+9ab^4-b^6-6a^2b^4-9a^4b^2=27\)
\(\Leftrightarrow a^6-3a^4b^2+3a^2b^4-b^6=27\)
\(\Leftrightarrow\left(a^2-b^2\right)^3=27\)
\(\Leftrightarrow a^2-b^2=\sqrt[3]{27}=3\)
\(a^3-3ab^2=46\)\(\Rightarrow\left(a^3-3ab^2\right)=46^2\)\(\Rightarrow a^6-6a^4b^2+9a^2b^4=2116\)
\(b^3-3a^2b=9\Rightarrow\left(b^3-3a^2b\right)^2=9^2\Rightarrow b^6-6a^2b^4+9a^4b^2=81\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=2197\)
\(\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=2197\)
\(\Rightarrow\left(a^2+b^2\right)^3=2197\)
\(\Rightarrow a^2+b^2=13\)