K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

Bài giải

Ta có: 6n + 4 \(⋮\)2n + 1   (n \(\inℤ\))

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

=> 2n + 1 \(\in\)Ư (1)

Ư (1) = {1; -1}

2n + 1 = 1 hay -1

2n       = 1 - 1 hay -1 - 1

2n       = 0 hay -2

  n       = 0 : 2 hay -2 : 2

  n       = 0 hay -1

Vậy n = 0 hay -1

14 tháng 3 2020

Ta có:                                                      chc:chia hết cho

3-2n chc n+1

=>3-2n-2+2 chc n+1

=>3-/2n+2/+2 chc n+1

=>3-2/n+1/+2 chc n+1  <1>

Lại có:

n+1 chc n+1

=>2/n+1/ chc n+1    <2>

Từ <1>,<2>=> 3-2 chc n+1

hay 1 chc n+1

=> n+1 th Ư của 1

Mà Ư của 1 là 1 và -1

=>n+1=1                                        =>n+1=-1

n=0                                                     n=-2

Vậy n=0, n=-2

                         CHÚC BẠN HỌC TỐT

14 tháng 3 2020

\(3-2n⋮n+1\)

Ta có \(3-2n=-2-2n+5=-2\left(n+1\right)+5\)

Do \(-2\left(n+1\right)⋮n+1\Rightarrow3-2n⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Leftrightarrow n\in\left\{0;-2;4;-6\right\}\)

...

14 tháng 3 2020

\(\frac{3-2n}{n+1}\)

\(=\frac{-2n+3}{n+1}\)

\(=\frac{-2n-2+5}{n+1}\)

\(=\frac{2\left(n+1\right)+5}{n+1}\)

\(=-2+\frac{5}{n+1}\)

\(\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

Có 2n-4 chia hết cho n+2

=>2(n+2)8 chia hết cho n+2

=> 8 chia hết cho n+2

=>n+2 thuộc Ư(8)={1;2;4;8;-1;-2;-4;-8}

Phần cuối bạn tự làm nha

13 tháng 3 2020

Để  \(2n-4⋮n+2\)

\(\Leftrightarrow2n+4-8⋮n+2\)

\(\Leftrightarrow2\left(n+2\right)-8⋮n+2\)

Vì \(2\left(n+2\right)⋮n+2\)( vì \(n\in Z\))

\(\Rightarrow8⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(8\right)\)( vì \(n\in Z\))

\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

\(\Leftrightarrow n\in\left\{-1;-3;0;-4;2;-6;6;-10\right\}\)

MK làm phần c) còn các phần khác bn tự làm nha:

6n+4 \(⋮\)2n+1

+)Ta có:2n+1\(⋮\)2n+1

           =>3.(2n+1)\(⋮\)2n+1

           =>6n+3\(⋮\)2n+1(1)

+)Theo bài ta có:6n+4\(⋮\)2n+1(2)

 +)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1

                                =>6n+4-6n-3\(⋮\)2n+1

                                =>1\(⋮\)2n+1

                               =>2n+1\(\in\)Ư(1)=1

                               =>2n+1=1

    +)2n+1=1

      2n    =1-1

      2n   =0

      n     =0:2

     n      =0\(\in\)Z

Vậy n=0

Chúc bn học tốt

29 tháng 1 2020

Bài giải

a) Ta có n + 5 \(⋮\)n - 1   (n \(\inℤ\))

=> n - 1 + 6 \(⋮\)n - 1

Vì n - 1 \(⋮\)n - 1

Nên 6 \(⋮\)n - 1

Tự làm tiếp.

b) Ta có 2n - 4 \(⋮\)n + 2

=> 2(n + 2) - 8 \(⋮\)n + 2

Vì 2(n + 2) \(⋮\)n + 2

Nên 8 \(⋮\)n + 2

Tự làm tiếp.

c) Ta có 6n + 4 \(⋮\)2n + 1

=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1

=> 6n + 4 - (6n + 3) \(⋮\)2n + 1

=> 1 \(⋮\)2n + 1

Tự làm tiếp

d) Ta có 3 - 2n \(⋮\)n + 1

=> -2n + 3 \(⋮\)n + 1

=> -2n - 2 + 5 \(⋮\)n + 1

=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)

Vì -2(n + 1) \(⋮\)n + 1

Nên 5 \(⋮\)n + 1

Tự làm tiếp.

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).

15 tháng 1 2016

a,n=1,2,3,4

 

6 tháng 2 2021

\(2n-4⋮2n+1\)

\(\Rightarrow2n+1-5⋮2n+1\)

=> \(5⋮2n+1\)

=> \(2n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

=> \(2n\in\left\{0;-2;4;-6\right\}\)

=> \(n\in\left\{0;-1;2;-3\right\}\) (TM)

13 tháng 2 2016

a) n+5 chia hết cho n-1

Ta có: n+5 = (n-1)+6 

=> n-1  và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}

=> n\(\in\){0;2;-1;3;-2;4;-5;7}

b) n+5 chia hết cho n+2

Ta có: n+5 = (n+2)+3 

=> n+2  và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}

=> n\(\in\){-3;-1;-5;1;}

c) 2n-4 chia hết cho n+2

Ta có: 2n-4 = 2(n+2)-8

=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}

=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}

d) 6n+4 chia hết cho 2n+1

Ta có: 6n+4 = 3(2n+1)+1 

=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}

=> n\(\in\){-1;0}

e) 3-2n chia hết cho n+1

Ta có: 3-2n= -2(1+n)+5 

=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}

=> n\(\in\){-2;0;-6;4;}