Cho tam giác ABC cân tại A.
a.Biết:B^=A^+30 độ.Tính số đo góc A
b.Gọi M là trung điểm của BC,biết:AB=10 cm,BC=12 cm.Tính AM?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì ΔABC cân tại A nên ta có :
\(\widehat{B}=\widehat{C}\) (2 góc đáy của ΔABC cân tại A)
ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng số đo ba góc trong 1 tam giác)
\(\Rightarrow\widehat{A}+55^o+55^o=180^o\)
\(\Rightarrow\widehat{A}=180^o-55^o-55^o=70^o\)
vậy \(\widehat{A}\) có số đo là 70o
b) xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (vì M là trung điểm của BC)
AM là cạnh chung
⇒ ΔAMB = ΔAMC (c.c.c)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
ta có : \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^o}{2}=90^o\)
⇒ AM ⊥ BC
a)
Sửa đề: ΔBIM=ΔCKM
Xét ΔBIM vuông tại I và ΔCKM vuông tại K có
BM=CM(M là trung điểm của BC)
\(\widehat{IBM}=\widehat{KCM}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBIM=ΔCKM(cạnh huyền-góc nhọn)
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(AH là tia phân giác của \(\widehat{BAC}\))
AH chung
Do đó: ΔABH=ΔACH(c-g-c)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
a: Xét ΔAHB vuông tại H và ΔAMH vuông tại M có
góc BAH=góc HAM
=>ΔAHB đồng dạng với ΔAMH
b: Xét ΔAHC vuông tại H có HMlà đường cao
nên CH^2=CM*CA
c: HC=BC/2=6cm
=>AH=8cm
HM=6*8/10=4,8cm
MC=6^2/10=3,6cm
\(S_{HMC}=\dfrac{1}{2}\cdot4.8\cdot3.6=1.8\cdot4.8=5.76\left(cm^2\right)\)
a. Áp dụng định lí tổng ba góc trong một tam giác vào tam giác ABC:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\\ \widehat{A}+\widehat{A}+30^o+\widehat{A}+30^o=180^o\\ 3\widehat{A}=180^o-60^o=120^o\\\Rightarrow \widehat{A}=40^o\)
b. Vì M là trung điểm của BC nên suy ra \(AM\perp BC\) và \(CM=MB=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác AMB, ta có:
\(AM^2+MB^2=AB^2\\ \Rightarrow AM=\sqrt{AB^2-MB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
Vậy \(AM=8\left(cm\right)\)