Bài 1: Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác MNPQ là hình gì ? vì sao ?
b) Chứng minh rằng nếu ABCD là hình thang cân thì MP là tia phân giác của góc QMN.
Bài 2: Cho hình bình hành ABCD có BC = 2AB. Góc A=60\(^0\). Gọi E, F thứ tự là trung điểm của BC và AD, vẽ I đối xứng với A qua B.
a) Tứ giác ABEF là hình gì? Chứng minh.
b) Chứng minh tư giác AIEF là hình thang cân.
c) Chứng minh BICD là hình chữ nhật.
d) Tính góc AED.
Bài 1:
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của DC
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành