Khảo sát sự biến thiên của hàm số y= x2019 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-x_2^2-2x_2+2}{x_1-x_2}\)
\(=\left(x_1+x_2\right)-2\)
Vì \(x_1;x_2\in\left(-\infty;1\right)\) thì \(\left\{{}\begin{matrix}x_1< 1\\x_2< 1\end{matrix}\right.\Leftrightarrow\left(x_1+x_2\right)< 2\)
\(\Leftrightarrow\left(x_1+x_2\right)-2< 0\)
Vậy: Hàm số nghịch biến trên \(\left(-\infty;1\right)\)
Tập xác định: D = R
y′=0 ⇔
Hàm số đồng biến trên mỗi khoảng (-1; 0) và (1; + ∞ )
Hàm số nghịch biến trên mỗi khoảng (− ∞ ; −1); (0; 1)
Hàm số đạt cực đại tại x = 0; y CĐ = 0
Hàm số đạt cực tiểu tại x = 1 hoặc x = -1; y CT = −2
Đồ thị có hai điểm uốn:
Bảng biến thiên:
Đồ thị:
Đồ thị cắt trục hoành tại
y = 4 x + 4 2 x + 1
Tập xác định: D = R \ {−1/2}
Ta có
Bảng biến thiên:
Hàm số nghịch biến trên các khoảng (− ∞ ; −1/2) và (−1/2; + ∞ )
Tiệm cận đứng: x = −1/2;
Tiệm cận ngang: y = 2.
Giao với các trục tọa độ: (0; 4) và (-1; 0)
Đồ thị:
Khảo sát hàm số
- TXĐ: D = R \ {-1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).
+ Cực trị: Hàm số không có cực trị.
+ Tiệm cận:
⇒ x = -1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 3 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao với Ox: (-3; 0)
+ Giao với Oy: (0; 3)
+ Đồ thị hàm số nhận (-1; 1) là tâm đối xứng.
Với m = 1, hàm số trở thành
- TXĐ: D = R
- Sự biến thiên:
+ Chiều biến thiên:
+ Giới hạn:
+ Bảng biến thiên:
Kết luận:
Hàm số đồng biến trên (0; +∞)
Hàm số nghịch biến trên (-∞; 0)
Hàm số có điểm cực tiểu là (0; 1).
- Đồ thị:
+ Đồ thị nhận trục Oy là trục đối xứng.
+ Đồ thị cắt trục tung tại (0; 1).
+ Đồ thị hàm số đi qua (-1; 1,75); (1; 1,75); (-2; 7); (2; 7).
Với m = 2 ta có hàm số
- Tập xác định : D = R\{-1}.
- Sự biến thiên :
⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).
+ Cực trị : hàm số không có cực trị
+ Tiệm cận :
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số
⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên :
- Đồ thị :
Xét hàm số ta có:
- Tập khảo sát : (0 ; +∞).
- Sự biến thiên:
+ với ∀ x > 0.
Do đó, hàm số đã cho đồng biến trên tập xác định.
+ Giới hạn:
+ Tiệm cận : Đồ thị hàm số không có tiệm cận.
+ Bảng biến thiên:
- Đồ thị hàm số: