Cho tam giác ABC cân tại A. M là trung điểm của BC. ME vuông góc với AB tại E. MF vuông góc với AC tại F
a)Chứng minh AM là đường trung trực của EF
b)Từ B kẻ đường thẳng vuông góc với AB tại B. Từ C kẻ đường thẳng vuông góc với AC tại C. 2 đường thẳng này cắt nhau tại D. Chứng minh A,M,D thẳng hàng
Vì tam giác ABC cân tại A
suy ra AB = AC, góc B = góc C
Xét tam giác vuông BME và tam giác vuông CMF
có Bm=CM (GT)
góc EBM = góc FCM ( CMT)
suy ta tam giác EBM = tam giác FCM ( cạnh huyền-góc nhọn)
suy ra EM=MF (hai cạnh tương ứng)
BE=CF (hai cạnh tương ứng)
mà BE+EA=AB, AF+FC=AC, lại có AB=AC
suy ra AE=AF
Xét tam giác AEM và tam giác AFM
có AE=AF (CMT)
AM chung
EM=FM ( CMT)
suy ra tam giác AEM = tam giác AFM (c.c.c) (*)
suy ra AE=AF suy ra A thuộc đường trung trực của EF (1)
mà MF=MF (CMT) suy ra M thuộc đường TT của EF (2)
Từ (1) và (2) suy ra AM là đường T.T của EF
b) Xét tam giác ABD và tam giác ACD
có AD chung
AB=AC (CMT)
góc ABD=góc ACD = 900
suy ra tam giác ABD và tam giác ACD (cạnh huyền-cạnh góc vuông)
suy ra góc BAD = góc CAD
suy ra AD là tia phân giác của góc BAC (3)
Từ (*) suy ra góc EAM = góc CAM
suy ra AM là tia phân giác của góc BAC (4)
Từ (3) và (4) suy ra AM trùng AD
suy ra A, M, D thẳng hàng