Cho tam giác ABC. M là trung điểm AC, N là trung điểm AB. Trên tia đối tia BM lấy E sao cho ME = MB, trên tia đối tia NC lấy F sao cho NF = NC. CMR
a/ Tam giác MAE = tam giác MCB
b/ AE = AF
c/ A, E, F thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Xét tam giác MAE và tam giác MCB có:
ME = MB (gt)
MA = MC (gt)
Góc M1 = góc M2 (đối đỉnh)
=> Tam giác MAE = Tam giác MCB (c.g.c)
2. Xét tứ giác AEBC có:
M là trung điểm BE (gt)
M là trung điểm AC (gt)
=> Tứ giác AEBC là hình bình hành
=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:
N là trung điểm BA (gt)
N là trung điểm FC (gt)
=> Tứ giác FABC là hình bình hành
=> FA // BC và FA = BC (2)
Từ (1), (2) => AE = AF
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)
c, Xét \(\Delta AME\)và \(\Delta CMB\)có:
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(2góc đối đỉnh)
ME=MB(gt)
\(\Rightarrow\)\(\Delta AME=\Delta CMB\)(c-g-c)
\(\Rightarrow\)AE=BC(2 cạnh tương ứng)(dpcm)
Do\(\Delta AME=\Delta CMB\)(c-g-c)
\(\Rightarrow\)\(\widehat{AEM}=\widehat{CBM}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong suy ra AE song song BC(dpcm)
a,Xét \(\Delta AMB\)và\(\Delta CME\)có
AM=CM(M là tđ của AC)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
MB=ME(gt)
\(\Rightarrow\) \(\Delta AMB\)=\(\Delta CME\)(c-g-c)
\(\Rightarrow\)AB=CE(dpcm)
b, câu b tương tự câu a nhé
d, bạn chứng minh \(\Delta ANF=\Delta BNC\)(c-g-c)
\(\Rightarrow\)AF=BC (1)
lại có AE=BC(theo c) (2)
Từ (1), (2) \(\Rightarrow\)AE=AF
\(\Rightarrow\)A là trung điểm của EF(dpcm)
Xét ΔMAE và ΔMCB có:
MA = MC (M là trung điểm của AC)
∠AME = ∠CMB (2 góc đối đỉnh)
ME = MB (gt)
⇒ ΔMAE = ΔMCB (c.g.c)
⇒ AE = BC (2 cạnh tương ứng) (1)
Xét ΔNAF và ΔNBC có:
NA = NB (N là trung điểm của AB)
∠ANF = ∠BNC (2 góc đối đỉnh)
NF = NC (gt)
⇒ ΔNAF = ΔNBC (c.g.c)
⇒ AF = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) ⇒ AE = AF
Ta có: ΔMAE = ΔMCB (cmt)
⇒ ∠MAE = ∠MCB (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)
Ta có: ΔNAF = ΔNBC (cmt)
⇒ ∠NAF = ∠NBC (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)
Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng
XÉT \(\Delta ABM\) VÀ \(\Delta ACN\) CÓ
AB=AC (GT)
AN=AM (GT)
\(\widehat{B}=\widehat{C}\) (VÌ TAM GIÁC ABC CÂN TẠI A)
=>\(\Delta AMB=\Delta ANC\left(cgc\right)\)
b;VÌ TAM GIÁC AMB=TAM GIÁC ANC =>BM=NC
XÉT \(\Delta BNC\) VÀ \(\Delta BMC\) CÓ
BM=NC
\(\widehat{MBC}=\widehat{NCB}\)
GÓC C CHUNG
=>AM GIÁC BNC=TAM GIÁC BMC (GCG)
C;
a) Xét tam giác MAE và tam giác MCB
có AM= AC (GT)
BM = ME(GT)
góc AME = góc CMB ( đối đỉnh)
suy ra tam giác MAE = tam giác MCB (c.g.c) (1)
b) Từ (1) suy ra AE = BC ( hai cạnh tương ứng) (2)
Xét tam giác ANF và tam giác BNC
có AN = BN(GT)
góc ANF = góc BNC ( đối đỉnh)
NF=NC (GT)
suy ra tam giác ANF = tam giác BNC (c.g.c) (3)
suy ra AF = BC ( hai cạnh tương ứng ) (4)
Từ (2) và (4) suy ra AE=AF (5)
c) Từ (1) suy ra góc MAE = góc C
Từ (3) suy ra góc FAB = góc B
mà góc BAC + góc B + góc C = 1800
suy ra góc BAC + góc MAE+góc FAB = 1800
hay góc EAF = 1800
suy ra ba điểm A, E, F thẳng hàng