K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

3xy+x+3y=4

⇒x(3y+1)+3y+1=5

⇒x(3y+1)+(3y+1)=5

⇒(3y+1)(x+1)=5

⇒x+1; 3y+1 ∈ ƯU(5)={±1;±5}

Mà 3y+1 là ước chia 3 dư 1 ⇒ 3y+1 ∈ {1,-5}

Lập bảng:

3xy+11-5
y0-2
x+15-1
x4-2

Vậy (x;y)=(-2;-2); (4;0)

Bài 2: 

Ta có: (x-3)(x+4)>0

=>x>3 hoặc x<-4

Bài 3:

a: \(5S=5-5^2+...+5^{99}-5^{100}\)

\(\Leftrightarrow6S=1-5^{100}\)

hay \(S=\dfrac{1-5^{100}}{6}\)

10 tháng 1 2022

x,y∈Z không bạn

10 tháng 1 2022

26 tháng 12 2022

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

26 tháng 12 2022

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg

22 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM

23 tháng 6 2015

=> 2x2 - 2y2 + x - y = y2

=> 2(x2 - y2) + (x - y) = y2

=> 2.(x - y).(x+y) + (x - y) = y2

=> (x - y).(2x+ 2y + 1) = y2  là số chính phương  (*)

Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau  (**)  vì: 

Gọi d = ƯCLN(x - y; 2x + 2y + 1) 

=> x- y ; 2x + 2y + 1 chia hết cho d

=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d

và  (2x+ 2y+ 1) - 2(x - y)  chia hết cho d =>  4y + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương

Tương tự: có 3y2 - 3x2 + y - x = -x2

=> 3(x2 - y2) + (x - y) = x2

=> 3(x - y)(x+y) + (x - y) = x2

=> (x - y).(3x+ 3y + 1) = x2 là số chính phương 

Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương

=> ĐPCM