K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,`

`Q(x)=`\(-3x^4+4x^3+2x^2+\)\(\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)

`=(-3x^4-2x^4+8x^4)+(4x^3-4x^3)+2x^2+(-3x+3x)+(2/3+1)`

`= 3x^4+2x^2+5/3`

`b,`

Bậc của đa thức: `4`

Hệ số cao nhất: `3`

Hệ số tự do: `5/3`

`c,`

Đặt `3x^4+2x^2+5/3=0`

Vì \(\left\{{}\begin{matrix}x^4\ge0\rightarrow3x^4\ge0\\x^2\ge0\rightarrow2x^2\ge0\end{matrix}\right.\)

`-> 3x^4+2x^2+5/3`\(>0\)

`->` Đa thức `Q(x)` vô nghiệm.

`@`\(\text{dn inactive.}\)

21 tháng 5 2022

`a)`

`@` Giảm dần:

`A(x)=-4^5-x^3+4x^2+5x+9+4x^5-6x^2-2`

`A(x)=4x^5-x^3-2x^2+5x-1017`

`@` Tăng dần:

`A(x)=-4^5-x^3+4x^2+5x+9+4x^5-6x^2-2`

`A(x)=-1017+5x-2x^2-x^3+4x^5`

_______________________________________________________

`b)` Bậc của `A(x)` là: `5`

11 tháng 5 2022

a, \(P\left(x\right)=5x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b, Thay x = 1 vào Q(x) ta được 

-5 - 1 + 4 - 5 = -7 

c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)

\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)

\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)

11 tháng 5 2022

d đâu bn

a) P(x) = 5x5 - 4x2 + 7x + 15

Q(x) = 5x5 - 4x2 + 3x + 8

b) Có: P(x) - Q(x) = 4x + 7

P(x) - Q(x) = 0 <=> x = \(-\dfrac{-7}{4}\)

8 tháng 3 2023

`a,```P(x) = 8x^5 +7x -6x^2 -3x^5 +2x^2+15`

`= (8x^5 -3x^5 ) +(-6x^2+2x^2) +7x+15`

`=5x^5 -4x^2 +7x+15`

`Q(x) =4x^5 +3x-2x^2 +x^5 -2x^2+8`

`=(4x^5+x^5) +(-2x^2  -2x^2)+3x+8`

`= 5x^5 - 4x^2 +3x+8`

`b, P(x) -Q(x)=(5x^5 -4x^2 +7x+15)-(5x^5 - 4x^2 +3x+8)`

`= 5x^5 -4x^2 +7x+15-5x^5 +4x^2 -3x-8`

`= (5x^5-5x^5)+(-4x^2+4x^2) +(7x-3x)+(15-8)`

`= 0 + 0 +4x + 7`

`=4x+7`

21 tháng 7 2021

a)

`P(x)=7x^3+(4x^2-3x^2)-x+5=7x^3+x^2-x+5`

`Q(x)=-7x^3-x^2+2x+(6-8)=-7x^3-x^2+2x-2`

b)

`P(x)+Q(x) = 7x^3+x^2-x+5-7x^3-x^2+2x-2`

`=(7x^3-7x^3)+(x^2-x^2)+(2x-x)+(5-2)`

`=x+3`

`P(x)-Q(x)=7x^3+x^2-x+5-(-7x^3-x^2+2x-2)`

`= 7x^3+x^2-x+5+7x^3+x^2-2x+2`

`=(7x^3+7x^3)+(x^2+x^2)-(x+2x)+(5+2)`

`=14x^3+2x^2-3x+7`

c) `A(x) = P(x)+Q(x)=x+3`

`A(x)=0 <=> x+3=0 <=>x=-3`.

12 tháng 6 2021

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa

a: A(x)=3x^5+x^4-x^2+x

B(x)=3x^5-x^4+x^2+x-2

b: M(x)=B(x)-A(x)

=3x^5-x^4+x^2+x-2-3x^5-x^4+x^2-x

=-2x^4+2x^2+2x-2

 

1: \(A\left(x\right)=-3x^3+4x^2+4x+3\)

\(B\left(x\right)=-3x^3+4x^2-x+7\)

2: \(A-B=0\)

=>4x+3-x+7=0

=>3x+10=0

hay x=-10/3

1) 

\(A=9-x^3+4x-2x^3+4x^2-6\)

\(A=(9-6)+\left(-x^3-2x^3\right)+4x+4x^2\)

\(A=3-3x^3+4x+4x^2\)

\(A=-3x^3+4x^2+4x+3\)

 

\(B=3+x^3+4x^2+2x^3+7x-6x^3-8x+4\)

\(B=(3+4)+(x^3+2x^3-6x^3)+4x^2+(7x-8x)\)

\(B=7-3x^3+4x^2-x\)

\(B=-3x^3+4x^2-x+7\)

2) \(A-B=(-3x^3+4x^2+4x+3)-\) \((-3x^3+4x^2-x+7)\)

    \(A-B=-3x^3+4x^2+4x+3+\)\(3x^3-4x^2+x-7\)

    \(A-B\) \(=\left(-3x^3+3x^3\right)+\left(4x^2-4x^2\right)+\left(4x+x\right)+\left(3-7\right)\)

    \(A-B\) \(=5x-4\)

Đặt tên cho đa thức \(5x-4\) là \(H\left(x\right)\)

 Cho \(H\left(x\right)=0\) 

hay  \(5x-4=0\)

        \(5x\)       \(=0+4\)

        \(5x\)       \(=4\)

          \(x\)       \(=4:5\)

          \(x\)       \(=\)  \(0,8\)

Vậy \(x=0,8\) không phải là nghiệm của H(\(x\))

MIK KHÔNG CHẮC LÀ CÂU 2 ĐÚNG