K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

Do đó MN//BC

b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)

c, Vì MN//BC nên BMNC là hình thang

21 tháng 10 2021

giải chi tiết giúp em đc ko ạ 

 

15 tháng 12 2021

a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC

Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)

b. Vì MN là đtb nên MN//BC hay BMNC là hình thang

Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân

c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao

Do đó \(AH\bot BC\)

Mà Q,M là trung điểm BH và AB nên QM là đtb 

Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)

Mà \(MN//BC\) nên \(MP//QH\)

Do đó QMPH là hbh

Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)

Vậy QMPH là hcn

13 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

16 tháng 7 2021

a) Có: M là trung điểm của AB (GT)

N là là trung điểm của AC (GT)

=> MN là ĐTB của tam giác ABC

=> MN // BC

=> BMNC là hình thang

b) Có: MN là ĐTB của tam giác ABC

=> 2. MN = BC

=> BC = 20 (cm)

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét tứ giác BMNC có MN//BC(cmt)

nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

11 tháng 9 2021

a/ M, N là trung điểm của AB, AC ⇒ MN là đường trung bình của △ABC, MN // BC (1)

Vậy: MNCB là hình thang (đpcm)

==========

b/ Do MN là đường trung bình của △ABC

Vậy: \(MN=\dfrac{BC}{2}\Rightarrow BC=MN.2=3,5.2=7cm\)

==========

c/ Do E là trung điểm của BC \(\Rightarrow CE=\dfrac{BC}{2}\)

- Mà \(MN=\dfrac{BC}{2}\Rightarrow MN=CE\left(2\right)\)

Từ (1) và (2). Vậy: MNCE là hình bình hành (đpcm)

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=10\left(cm\right)\)

21 tháng 12 2017

a)  \(\Delta ABC\) có  MA = MB;  NA = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)MN // BC

\(\Rightarrow\)Tứ giác BMNC là hình thang

b)  \(\Delta ABC\)có  NA = NC;  QB = QC

\(\Rightarrow\)NQ // AB;   NQ = 1/2 AB

mà   MA = 1/2 AB

\(\Rightarrow\)NQ = MA

Tứ giác AMQN có   NQ // AM;   NQ = AM

\(\Rightarrow\)AMQN là hình bình hành

21 tháng 12 2017

c)  E là điểm đối xứng của H qua M

\(\Rightarrow\)ME = MH

Tứ giác AHBE  có  MA = MB (gt);  ME = MH (gt)

\(\Rightarrow\)AHBE là hình bình hành

mà  \(\widehat{AHB}\)= 900

\(\Rightarrow\)hình bình hành AHBE  là  hình  chữ nhật