K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

Tham khảo

Anser reply image 
11 tháng 5 2022

cảm ơn bạn nhiều!!! hiha

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Suy ra: BH=CH

hay H là trung điểm của BC

b: Xét ΔABH vuông tại H và ΔDCH vuông tại H có

HB=HC

HA=HD

Do đó: ΔABH=ΔDCH

c: Ta có: ΔABH=ΔDCH

nên AB=DC

mà AB=AC

nên DC=AC

hay ΔACD cân tại C

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có

HA=HD

HB chung

Do đó:ΔABH=ΔDBH

Suy ra: BA=BD

hay ΔBAD cân tại B

b: Xét ΔCAD có 

CH là đường trung tuyến

DM là đường trung tuyến

AN là đường trung tuyến

CH cắt DM tại G

Do đó: A,G,N thẳng hàng

23 tháng 4 2019

a, xét 2 t.giác vuông ABH và MBH có:

             AH=MH(gt)

            HB cạnh chung

=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)

b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC

=>t.giác AIC cân tại I

xét 2 t.giác vuông ABC và CDA có:

       AC cạnh chung

      \(\widehat{ACB}\)=\(\widehat{CAD}\)(t.giác AIC cân tại I)

=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)

=> CD=AB(2 cạnh tương ứng)

c,dễ nên tự làm

25 tháng 2 2020

a, xét 2 t.giác vuông ABH và MBH có:
             AH=MH(gt)
            HB cạnh chung
=> t.giác ABH=t.giác MBH(cạnh góc vuông-cạnh góc vuông)
b, vì I là trung điểm của BC nên AI=1/2 BC<=> AI=IC
=>t.giác AIC cân tại I
xét 2 t.giác vuông ABC và CDA có:
       AC cạnh chung
   góc ACB    = góc CAD (t.giác AIC cân tại I)
=>t.giác ABC=t.giác CDA(cạnh góc vuông-góc nhọn)
=> CD=AB(2 cạnh tương ứng)

c) Ta có \(\hept{\begin{cases}\widehat{ACB+\widehat{ABC=90}độ}\\HBM+HMB=90\end{cases}}\)(do tam giác ABC zuông tại a , do tam giác BHM zuông tại H

mà ABH=HBM do ( Tam giác AHB=tam giác HBM cmt)

=> ACB=HMB hay ACB =AMB 

a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có

CH chung

HA=HM

=>ΔCHA=ΔCHM

=>góc ACH=góc MCH

=>CH là phân giác của góc ACM

b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có

HA=HM

góc HAC=góc HDM

=>ΔHAC=ΔHMD

=>HC=HD

=>AM là trung trực của CD