Giải phương trình sau \(\frac{50}{x-49}+\frac{49}{x-50}=\frac{x-49}{50}+\frac{x-50}{49}\):
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14
chuyen ve trai sang phai ta co x-49/50+x-50/49-50/x-49-49/x-50
=(x-49/50-1)+(x-50/49-1)+(-50/x-49+1)+(-49/x-50+1)
=(x-99)(1/50+1/49+1/x-49+1/x-50)
lý luận thi x=90 k nha
nhưng mà bạn ơi! cái cụm bên phải(1/50+1/49+1/x-49+1/x-50) nó còn có chứa ẩn x mà bạn :( làm sao đẻ cm nó luôn lớn hơn ) đây????
a) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\)
\(\Leftrightarrow\)\(x=-100\)
Vậy...
10) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (vì 1/86 + 1/85 + 1/84 + 1/83 + 1/4 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy....
\(ĐKXĐ:x\ne49;x\ne50\)
Đặt \(x-49=u;x-50=v\)
Phương trình trở thành \(\frac{50}{u}+\frac{49}{v}=\frac{u}{50}+\frac{v}{49}\)
\(\Rightarrow\frac{50v+49u}{uv}=\frac{49u+50v}{2450}\)
\(\Rightarrow\orbr{\begin{cases}50v+49u=0\\uv=2450\end{cases}}\)
+) \(50v+49u=0\)
\(\Rightarrow50v=-49u\)
\(\Rightarrow\frac{v}{-49}=\frac{u}{50}=\frac{\left(x-50\right)-\left(x-49\right)}{-49-50}\)
\(=\frac{-1}{-99}=\frac{1}{99}\)
\(\Rightarrow\hept{\begin{cases}v=\frac{-49}{99}\\u=\frac{50}{99}\end{cases}}\Rightarrow x=\frac{4901}{99}\)(tm)
+) \(uv=2450\)
hay \(\left(x-49\right)\left(x-50\right)=2450\)
\(\Leftrightarrow x^2-99x+2450=2450\)
\(\Leftrightarrow x^2-99x=0\Leftrightarrow x\left(x-99\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=99\end{cases}}\left(tm\right)\)
Vậy phương trình có 3 nghiệm \(S=\left\{0;\frac{4901}{99};99\right\}\)
ok cảm ơn bn