K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a) \(\sqrt{\dfrac{x-2\sqrt{x+1}}{x+2\sqrt{x+1}}}\) = \(\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\) = \(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}\)

b) \(\dfrac{x-1}{\sqrt{y}-1}\)\(\sqrt{\dfrac{y-2\sqrt{y+1}}{\left(x-1\right)^4}}\)

= \(\dfrac{x-1}{\sqrt{y}-1}\) \(\sqrt{\dfrac{\left(y-1\right)^4}{\left(x-1\right)^4}}\)

= \(\dfrac{x-1}{\sqrt{y}-1}\)\(\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^2}\)

= \(\dfrac{\sqrt{y-1}}{x-1}\)

Chúc bạn học tốt :3

26 tháng 7 2018

Thanks anyway <3

4 tháng 3 2018

\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;

16 tháng 6 2018
https://i.imgur.com/Godbi3O.jpg
14 tháng 5 2018

Mk trả lời cho bn rùi đó

Để \(P\ge1\) thì \(P-1\ge0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-1-\sqrt{x}+1}{\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: x=0 hoặc x>1

 

3 tháng 8 2018

1/

a/ \(x^2+\left(y-10\right)^2=0\)

vì: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\\left(y-10\right)^4\ge0\forall y\end{matrix}\right.\)

=> Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y-10=0\Rightarrow y=10\end{matrix}\right.\)

vậy......

b/ \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\le0\)

vì: \(\left\{{}\begin{matrix}\left(0,5x-5\right)^{20}\ge0\forall x\\\left(y^2-0,25\right)^2\ge0\forall y\end{matrix}\right.\)=> \(\left(0,5x-5\right)^{20}+\left(y^2-0,25\right)^{10}\ge0\)

=> Dấu ''='' xảy ra khi :

\(\left\{{}\begin{matrix}0,5x-5=0\\y^2-0,25=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{0,5}=10\\y^2=0,25\Rightarrow\left[{}\begin{matrix}y=0,5\\y=-0,5\end{matrix}\right.\end{matrix}\right.\)

Vậy........

2/ Ta có: \(2011\equiv1\left(mod10\right)\)

\(2011^{201}\equiv1^{201}\equiv1\left(mod10\right)\);

Có: \(1997^3\equiv3\left(mod10\right)\)

\(\left(1997^3\right)^4\equiv3^4\equiv1\left(mod10\right)\)

\(\left(1997^{12}\right)^{14}\equiv1^{14}\equiv1\left(mod10\right)\) hay \(1997^{168}\equiv1\left(mod10\right)\)

=> \(2011^{201}-1997^{168}\equiv1-1\equiv0\left(mod10\right)\)

hay \(2011^{201}-1997^{168}\) chia hết cho 10

=> Đpcm

14 tháng 2 2020

Bài 2:

a, |x-1| -x +1=0

|x-1| = 0-1+x

|x-1| = -1 + x

 \(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)

 \(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)

 \(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)

x = 2-x

2x = 2

x = 2:2

x=1

b, |2-x| -2 = x

|2-x| = x+2

\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)

2-x = x+2

x+x = 2-2

2x = 0

x = 0

14 tháng 10 2021

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra khi \(a=b\)

Bài tập :

Có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{x}+\dfrac{x+y}{y}=2+\dfrac{x}{y}+\dfrac{y}{x}\) ( do \(x+y=1\) )

Theo BĐT trên có : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

Nên \(A\ge2+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)