K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Đề bài yêu cầu gì?

20 tháng 10 2021

quên mất

 

1 tháng 11 2020

a, Vì O là trung điểm EF

MN qua O //AB//CD

=>M là trung điểm AD, N là TD BC

27 tháng 10 2021

a: Xét hình thang AEFD có 
O là trung điểm của EF

OM//AE//DF

Do đó: M là trung điểm của AD

Xét hình thang BEFC có 

O là trung điểm của FE

ON//EB//FC

Do đó: N là trung điểm của BC

13 tháng 12 2020

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và \(ME=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và \(NF=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và \(EN=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà \(EM=\dfrac{BD}{2}\)(cmt) và \(EN=\dfrac{AC}{2}\)(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi

22 tháng 11 2022

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và ME=BD2ME=BD2(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔBDC có 

N là trung điểm của BC(cmt)

F là trung điểm của CD(gt)

Do đó: NF là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)

⇒NF//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EN=AC2EN=AC2(Định lí 2 về đường trung bình của tam giác)

Hình bình hành EMFN trở thành hình thoi khi EM=EN

mà EM=BD2EM=BD2(cmt) và EN=AC2EN=AC2(cmt)

nên BD=AC

Vậy: Khi hình thang ABCD có thêm điều kiện BD=AC thì EMFN là hình thoi