cho M=((x+2/3x)+(2/x+1)-3):(2-4x/x+1)-(3x-3x^2+1/3x)
a. rut gon M
b. tim x sao cho M<1/3
c. tim xϵZ de MϵZ
giup mk vs, mk dang can gap a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Với 3x-2 > hoặc = 0 =>x> hoặc = 2/3
=>M=|3x-2|+4x+1=3x-2+4x+1=7x-1
Với 3x-2 <0 =>x<2/3
=>M=|3x-2|+4x+1=2-3x+4x+1=x+3
b)M=18
=>|3x-2|+4x+1=18
TH1:x> hoặc = 2/3
=>7x-1=18
=>7x=19
=>x=19/7 (nhận)
TH2: x<2/3
=>x+3=18
=>x=15 (loại)
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
\(2\left(x-2\right)\left(x+3\right)-x^2+4=0\)
\(2\left(x^2+3x-2x-6\right)-x^2+4=0\)
\(2x^2+6x-4x-12-x^2+4=0\)
\(x^2+2x-8=0\)
\(x^2+4x-2x-8=0\)
\(x\left(x+4\right)-2\left(x+4\right)=0\)
\(\left(x+4\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+4=0\rightarrow x=\left(-4\right)\\x-2=0\rightarrow x=2\end{cases}}\)
3/
a/ \(2\left(x+1\right)^2-3\left(x-1\right)^2+\left(x+2\right)\left(5-x\right)\)
\(=2\left(x^2+2x+1\right)-3\left(x^2-2x+1\right)+\left(5x-x^2+10-2x\right)\)
\(=2x^2+4x+2-3x^2+6x-3+5x-x^2+10-2x\)
\(=-2x^2+13x+9\)
b/ \(\left(3x-1\right)^3+\left(3x-1\right)^3-6x^2+9\)
\(=2\left(3x-1\right)^3-6x^2+9\)
\(=2\left(\left(3x\right)^3-3\left(3x\right)^2\cdot1+3\cdot3x\cdot1-1\right)-6x^2+9\)
\(=2\left(27x^3-27x^2+9x-1\right)-6x^2+9\)
\(=54x^3-54x^2+18x-2-6x^2+9\)
\(=54x^3-60x^2+18x+7\)
Số hơi dài, nên dễ tính sai -,- tính mik hay cẩu thả có j sai ibbb ạ
Bài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
a,
*\(P\left(x\right)\) = \(-3x^2+4x-x^3+x^2+3x-1\)
\(P(x)=-3x^2+7x-x^3-1\)
\(P(x)=-x^3-3x^2+7x-1\)
* \(Q(x)=3x^4-x^2+x^3-2x-1-2x^3\)
\(Q(x)=3x^4-x^2-x^3-2x-1\)
\(Q(x)=3x^4-x^3-x^2-1\)
b, \(M(x)=P(x)-Q(x)\)
\(M(x)=-x^3-3x^2+7x-1-3x^4+x^3+x^2+1\)
\(M(x)=-2x^2+7x-3x^4\)
a) \(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
b) \(=\left[\left(3x^3+1\right)^2-\left(3x\right)^2\right]-\left(3x^2+1\right)^2\)
\(=-\left(3x\right)^2=9x^2\)
c)\(=\left[\left(2x^2+1\right)^2-\left(2x\right)^2\right]-\left(2x^2+1\right)^2\)
\(=-\left(2x\right)^2=4x^2\)
Bài 2:
a: ĐKXĐ: \(x\notin\left\{0;2;-2;3\right\}\)\(A=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: Để A>0 thì x-3>0
hay x>3