K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

\(B=\overline{2x10y9}⋮9\left(0\le x,y\le9\right)\)

\(\Rightarrow\left(2+x+1+0+y+9\right)⋮9\)

\(\Rightarrow\left(12+x+y\right)⋮9\)

Do \(0\le x,y\le9\)

\(\Rightarrow\left[{}\begin{matrix}x+y=6\\x+y=15\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;5\right),\left(5;1\right),\left(2;4\right),\left(4;2\right),\left(3;3\right),\left(6;9\right),\left(9;6\right),\left(8;7\right),\left(7;8\right)\right\}\)

20 tháng 10 2021

x=7,y=1

_HT_

20 tháng 10 2021

cho e sin cách trình bày đi

16 tháng 6 2021

Bài 2:

Với x,y,z,t là số tự nhiên khác 0

Có \(\dfrac{x}{x+y+z+t}< \dfrac{x}{x+y+z}< \dfrac{x}{x+y}\)

\(\dfrac{y}{x+y+z+t}< \dfrac{y}{x+y+t}< \dfrac{y}{x+y}\)

\(\dfrac{z}{x+y+z+t}< \dfrac{z}{y+z+t}< \dfrac{z}{z+t}\)

\(\dfrac{t}{x+y+z+t}< \dfrac{t}{x+z+t}< \dfrac{t}{z+t}\)

Cộng vế với vế \(\Rightarrow1< M< \dfrac{x+y}{x+y}+\dfrac{z+t}{z+t}=2\)

=> M không là số tự nhiên.

Bài 1:

Ta có:

\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\) 

\(B=\left(1+\dfrac{2007}{2}\right)+\left(1+\dfrac{2006}{3}\right)+...+\left(1+\dfrac{2}{2007}\right)+\left(1+\dfrac{1}{2008}\right)+1\) 

\(B=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}\) 

\(B=2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\) 

\(\Rightarrow\dfrac{A}{B}=\dfrac{2009.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}=2009\)

2 tháng 7 2021

\(1.\)

Để \(56x3y⋮2\)thì: \(y=0;2;4;6;8\)

+) Nếu \(y=0\)thì: \(5+6+x+3+0=14+x⋮9\Leftrightarrow x=4\)

+) Nếu \(y=2\)thì: \(5+6+x+3+2=16+x⋮9\Leftrightarrow x=2\)

+) Nếu \(y=4\)thì: \(5+6+x+3+4=18+x⋮9\Leftrightarrow x=0;x=9\)

+) Nếu \(y=6\)thì: \(5+6+x+3+6=20+x⋮9\Leftrightarrow x=7\)

+) Nếu \(y=8\)thì: \(5+6+x+3+8=22+x⋮9\Leftrightarrow x=5\)

2 tháng 7 2021

\(2.\)

Ta có: \(45=9.5\)

Để: \(71x1y⋮5\)thì: \(y\in\left\{0;5\right\}\)

Ta được: \(71x10;71x15\)

+) Nếu \(y=0\)thì \(71x1y⋮9\Leftrightarrow x\in\left\{0;9\right\}\)

+) Nếu \(y=5\)thì \(71x1y⋮9\Leftrightarrow x=4\)

Vậy với \(x\in\left\{0;9\right\};y=0\)và \(x=4;y=5\)thì \(71x1y⋮45\)

29 tháng 8 2017

Câu 1 tương tự câu 2 nhá

1.

để 16xy chia hết cho 2 thì y phải là số chẵn :0;2;4;6;8

để 16xy chia hết ch5 thì y phải là 0 hoặc 5

=> y = 0

ta có số : 16x0

Để 16x0 chia hết cho 9 thì 1+6+0+x phải  chia hết 9

                                hay 7 +x phải chia hết 9

 Mà x là chữ số 

=> x = 2

Bài 1: y=5; x=5

Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)

Bài 3: 

a: *=5

b: *=0; *=9

c: *=9

13 tháng 2 2018

Ta có : 

\(\left|3x+18\right|\ge0\) và \(\left|4x-28\right|\ge0\) \(\Rightarrow\) \(\left|3x+18\right|+\left|4y-28\right|\ge0\)

Mà \(\left|3x+18\right|+\left|4y-28\right|\le0\) ( đề bài cho )

\(\Rightarrow\)\(\left|3x+18\right|+\left|4y-28\right|=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=-18\\4y=28\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\y=7\end{cases}}}\)

Vậy \(x=-6\) và \(y=7\)

13 tháng 2 2018

Ta có \(\left|3x+18\right|+\left|4y-28\right|\le0\)

Mà \(\left|3x+18\right|\ge0\forall x;\left|4y-28\right|\ge0\forall y\)

=> |3x+18|+|4y-28|=0

=> 3x+18=4y-28=0

• 3x+18=0 <=> 3x=-18 <=> x=-6

• 4y-28=0 <=> 4y=28 <=> y=7

Vậy ...