K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}-\frac{1}{x+1}-\frac{1}{x+3}-\frac{1}{x+4}-\frac{1}{x+6}=0\)

\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{\left(x+4\right)\left(x+5\right)}-\frac{1}{\left(x+6\right)\left(x+7\right)}=0\)

\(\Leftrightarrow\frac{8x+20}{x\left(x+1\right)\left(x+4\right)\left(x+5\right)}+\frac{8x+36}{\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x+7\right)}=0\).Đến đây mk chịu

13 tháng 4 2021

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{\left(x-5\right)\left(x-6\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-....+\dfrac{1}{x-5}-\dfrac{1}{x-6}=\dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-6}=\dfrac{1}{10}\Leftrightarrow\dfrac{x-6-x+1}{\left(x-1\right)\left(x-6\right)}=\dfrac{1}{10}\)

\(\Leftrightarrow x^2-7x+56=0\Leftrightarrow x^2-2.\dfrac{7}{2}x+\dfrac{49}{4}+\dfrac{175}{4}=\left(x-\dfrac{7}{2}\right)^2+\dfrac{175}{4}>0\)

Vậy phương trình vô nghiệm 

13 tháng 4 2021

oke cảm ơn bn nhìu :)))

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

2:

a: =>x-1=0 hoặc 3x+1=0

=>x=1 hoặc x=-1/3

b: =>x-5=0 hoặc 7-x=0

=>x=5 hoặc x=7

c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)

d: =>x=0 hoặc x^2-1=0

=>\(x\in\left\{0;1;-1\right\}\)

18 tháng 4 2023

Bạn tách ra từng câu thoi nhe .

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

21 tháng 7 2017

Ta có : |1 - 5x| - 1 = 3

=> |1 - 5x| = 4

\(\Leftrightarrow\orbr{\begin{cases}1-5x=4\\1-5x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=1-4\\5x=1+4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=1\end{cases}}\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

=>x+1=1 và y-2=1/2

=>x=0 và y=5/2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)

=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6

=>x-2y=9 và 2x-y=12

=>x=5; y=-2

c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)