Tính nhanh C=\(\frac{3}{(1\cdot 2)^{2}}+\frac{5}{(2\cdot 3)^{2}}+\frac{7}{(3\cdot 5)^{2}}+...+\frac{2n+1}{[n\cdot (n+1)^{2}]}\)
Giúp mình nhanh nhé tối mình phải nộp rồi! Cảm ơn các bạn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
ta có:\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}
câu 2:đặt B=1/1*2+1/2*3+...+1/2007*2008
\(A=3\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\right)\)
\(\frac{A}{3}=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2008^2}\)\( (1)
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
\(x.\left(\frac{1}{6}.\frac{72}{10}+\frac{13}{10}+\frac{1}{2}\right)+15=19.75\)
\(\Leftrightarrow x.\left(\frac{6}{5}+\frac{13}{10}+\frac{1}{2}\right)=4,75\)
\(\Leftrightarrow x.3=4,75\) \(\Rightarrow x=1,583\)
Ủa mà có bài thì tự đi mà làm bài này có khó lắm đâu
\(\frac{2n+1}{\left[n\left(n+1\right)\right]^2}=\frac{\left(n+1\right)^2-n^2}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(\Rightarrow C=\frac{1}{1}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)
\(\Rightarrow C=1-\frac{1}{\left(n+1\right)^2}\)
Cảm ơn bạn! Chúc bạn học tốt!