(4) cho đường tròn tâm (O) và điểm A nằm ngoài đường tròn, từ A vẽ tiếp tuyến AB vs đường tròn (B là tiếp điểm). kẻ đường kính BC của đường tròn (O). AC cắt đường tròn (O) tại D (D khác C)
a) c/m: BD ⊥AC và \(AB^2=AD.AC\)
b) từ C vẽ dây CE//OA, BE cắt OA tại H. c/m: H là trg điểm BE và AE là tiếp tuyến đg tròn (O)
c) c/m: \(\widehat{OHC}=\widehat{OAC}\)
d) tia OA cắt đg tròn (O) tại F. c/m: \(FA.CH=HF.CA\)
giúp mk vs ạ mai mk học rồi
a: Xét (O) có
ΔBDC nội tiếp đường tròn
BC là đường kính
DO đó:ΔBDC vuông tại D
Xét ΔBCA vuông tại B có BD là đường cao ứng với cạnh huyền AC
nên \(AB^2=AD\cdot AC\)