bt2:chứng minh rằng:
1, Hai so a,b cung chia 3 rư r thi hieu cua chung chia het cho 3
2, 10n +18n -1 chia het cho 27
3, 102 +72n -1 chia het cho 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. goi ba so tu nhien chan do la a nhan 2, a nhan 2 +2,a nhan 2 +4
theo bai ra ta co : tong ba so chan lien tiep la : a*2+a*2+2+a*2+4 = ( a*2+a*2+a*2) + (2+4)= a*6+6=6*(a+1)
vi 6 chia het cho 6 nen 6*(a+1)chia het cho 6
Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z)
Gọi a:7=q+k(K là số dư q là thương)
Gọi b:7=p+k(p là thương, k là số dư)
=> a:7‐b:7=(q ‐ p )=>(a‐b):7 = q ‐‐ p
=>a‐b = (q ‐ p) x7
Có (q ‐ p)x 7chia hết cho 7 => a‐b chia hết cho 7
a)
M= 1+3+32+33+...+319
= (1+3+32)+(33+34+35)+...+(317+318+319)
= 13+ 33.(1+3+32)+...+317.(1+3+32)
= 13.(1+33+...+317) chia het cho 13
M= 1+3+32+33+...+319
= (1+3+32+33)+...+(316+317+318+319)
= 40+...+316.(1+3+32+33)
= 40+...+316.40
= 40. (1+...+316) chia het cho 40
M = 1+3+32+33+...+319
Vì 3+32+33+...+319 chia het cho 9
=> M chia cho 9 dư 1
=> M không chia hết cho 9
b) trong câu hỏi tương tự nhé bạn
a-2:3 => a-2+3:3 =>a+1:3
a-4:4 => a-4+5:5 => a+1:5
a-6:7 => a-6+7:7 => a+1:7
Vậy a+1 là bọi của 3,5,7
a nhỏ nhất nên a+1 nhỏ nhất
a+1 là BCNN(3;5;7)=105
a=104
2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4
Ta có cd chia hết cho 4 nên abcd chia hết cho 4
Câu b tương tự
2 câu đều có câu trả lời là 'Có'.Muốn chứng minh 2 tính chất thì dễ lắm :
- Tính chất 1 : a,b đều chia hết cho m thì a + b ; a - b cũng chia hết cho m (\(a,b\in N;a\ge b;m\in N;m>1\))
Đặt a = m.n ; b = m.q (\(n,q\in\)N*) theo định nghĩa chia hết.Lúc đó :
a + b = m.n + m.q = m.(n + q) mà \(n+q\in\)N* (do\(n,q\in\)N*) => a + b chia hết cho m.Tương tự với a - b
- Tính chất 2 : a chia hết cho m,b ko chia hết cho m thì a + b ko chia hết cho m (\(a,b,m\in N;m>1\))
Đặt a = m.n ; b = m.q + r (\(n,q,r\in\) N*\(;r\le m\)).Lúc đó :
a + b = m.n + m.q + r = m.(n + q) + r => a + b ko chia hết cho m (chia có dư ; dư r).
a, ta có 2 trường hợp:
+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2
+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2
vậy (n+10)(n+15) chia hết cho 2(đpcm)