Cho 3 số x y z thoả mãn x+y+z=0;-1<x;y;z<1
Tìm GTLN của P=x2008+y2010+z2012
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xyz-3x^2y-3xy^2\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]\)
\(=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)
\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)
\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)
=> 1/xy + 1/yz + 1/xz = 0
=> x + y + z = 0
Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)
x3 + y3 + z3 - 3xyz = 0
=> x3 + y3 + z3 = 3xyz
TA CÓ \(x^{2018}+y^{2020}+z^{2012}\ge x+y+z.\)
=>\(x^{2018}+y^{2020}+z^{2012}\ge0\)
Dấu bằng xảy ra khi zà chỉ khi
\(\hept{\begin{cases}x^{2018}=0\\y^{2020}=0\\z^{2012}=0\end{cases}=>\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}=>}x=y=z=0.}\)
why are you so stupid?