Cho a, b là hai số nguyên sao cho tồn tại hai số nguyên liên tiếp c và d để a - b = a2c - b2d. Chứng minh |a - b| là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi hai số cần tìm là a;a+1
Theo đề, ta có:
\(\left(a+1\right)^2-a^2=2013\)
=>2a+1=2013
=>2a=2012
hay a=1006
Vậy: hai số cần tìm là 1006 và 1007
Lời giải:
Đặt $d=c+1$
Khi đó:
$a-b=a^2c-b^2d=a^2c-b^2(c+1)=(a^2-b^2)c-b^2$
$\Leftrightarrow b^2=(a^2-b^2)c-(a-b)=(a-b)(ac+bc-1)$
$\Rightarrow b^2=|a-b|.|ac+bc-1|$
Đặt $d$ là ƯCLN của $|a-b|, |ac+bc-1|$
Ta có:
\(\left\{\begin{matrix} |a-b|\vdots d\\ |ac+bc-1|\vdots d\\ b^2=|(a-b)(ac+bc-1)|\vdots d^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a-b\vdots d\\ ac+bc-1\vdots d\\ b\vdots d\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} b\vdots d\\ a\vdots d\\ ac+bc-1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=\pm 1\)
Vậy $|a-b|, |ac+bc-1|$ nguyên tố cùng nhau.
Mà tích của chúng là scp nên $|a-b|$ cũng là scp (đpcm)
Lời giải:
Đặt $d=c+1$
Khi đó:
$a-b=a^2c-b^2d=a^2c-b^2(c+1)=(a^2-b^2)c-b^2$
$\Leftrightarrow b^2=(a^2-b^2)c-(a-b)=(a-b)(ac+bc-1)$
$\Rightarrow b^2=|a-b|.|ac+bc-1|$
Đặt $d$ là ƯCLN của $|a-b|, |ac+bc-1|$
Ta có:
\(\left\{\begin{matrix} |a-b|\vdots d\\ |ac+bc-1|\vdots d\\ b^2=|(a-b)(ac+bc-1)|\vdots d^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a-b\vdots d\\ ac+bc-1\vdots d\\ b\vdots d\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} b\vdots d\\ a\vdots d\\ ac+bc-1\vdots d\end{matrix}\right.\Rightarrow 1\vdots d\Rightarrow d=\pm 1\)
Vậy $|a-b|, |ac+bc-1|$ nguyên tố cùng nhau.
Mà tích của chúng là scp nên $|a-b|$ cũng là scp (đpcm)
a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương
b) Chứng minh rằng tổng các bình phương của không số nguyên liên tiếp (k=3,4,5) không là số chính phương
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Vì c, d là 2 số nguyên liên tiếp nên \(d=c+1\)
Thay vào đẳng thức \(a-b=a^2c-b^2d\)ta được
\(a-b=a^2c-b^2\left(c+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left[c\left(a+b\right)-1\right]=b^2\)
Dễ dàng chứng minh được \(\left(a-b,c\left(a+b\right)-1\right)=1\)
nên \(\left|a-b\right|\)là số chính phương