K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2020

1/ Gọi 4 số đó lần lượt là a;b;c;d

3 số đầu là 3 số hạng liên tiếp của CSN \(\Rightarrow ac=b^2\)

Tương tự: \(b+d=2c\) ; \(a+d=32\) ; \(b+c=24\)

\(\Rightarrow a+b+c+d=a+3c=56\Rightarrow a=56-3c\)

\(b+c=24\Rightarrow b=24-c\)

\(\Rightarrow\left(56-3c\right)c=\left(24-c\right)^2\)

Giải pt bậc 2 này ra c sau đó thế ngược lên tìm nốt a;b;d

2. Gọi số hạng đầu của CSN là \(u_1=3\) ; công bội \(q\) và số số hạng là \(n\)

\(u_n=u_1q^{n-1}\Rightarrow3q^{n-1}=1536\Rightarrow q^{n-1}=512\Rightarrow q^n=512q\)

Lại có:

\(S_n=u_1\frac{q^n-1}{q-1}=2047\Rightarrow\frac{3\left(512q-1\right)}{q-1}=2047\)

\(\Rightarrow1536q-3=2047q-2047\Rightarrow q=4\)

Vậy CSN đó có \(u_1=3;q=4\)

26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

27 tháng 2 2023

Gọi số đầu là x.

Cấp số cộng là q.

=> Số đầu, thứ 2. 3,4,5 là x,x+q,x+2q,x+3q,x+4q.

Tổng số 1 và 3 là x + (x+2q) = 28

Tổng số 3 và cuối là (x+2q)+(x+4q)=40.

Ta đã có 2 phương trình tạo thành 1 hệ phương trình.

Giải hệ tìm x và q.

Chúc em học tốt!

12 tháng 6 2017

Ta có công thức tìm số chẵn(số lẻ) trong 1 dãy số cách đều:(Số lớn nhất - số bé nhất) : khoảng cách + 1

2 số chẵn liên tiếp hơn kém hau 2 đơn vị

a)Hiệu của số chẵn cuối cùng và 1996 là:

 (50 -  1) x 2 = 98

Số chẵn cuối cùng là:

 1996 + 98 = 2094

b) Hiệu của 2004 và số chẵn đầu tiên là:

   (96 - 1) x 2 = 190

Số chẵn đầu tiên là:

   2004 - 190 = 1814

c) Ta thấy dãy số này có khoảng cách là 3 đơn vị

Số nhỏ nhất có 1 chữ số khác 1 : 3 dư 1 là: 4

    Dãy số đó có số số hạng là:

        (100 - 4) : 3 + 1 = 33 (số)

   Số hạng thứ 10 là:

   100 - (10 - 1) x 3)  = 73 (tính 10 - 1 trước rồi nhân với 3)

  Số hạng thứ 17 là:

  100 - (17 - 1) x 3) = 52

  Số hạng thứ 27 là:

   100 - (27 - 1) x 3) = 22

           Đ/s:...   

  

12 tháng 6 2017

a) Vì đây là dãy 50 số chẵn liên tiếp nên khoảng cách giữa mỗi số hạng là 2 đơn vị

Số cuối cùng là:

1996 + 2 x (50 - 1) = 2094

b) Vì đây là dãy 96 số chẵn liên tiếp nên khoảng cách giữa mỗi số hạng là 2 đơn vị

Số đầu tiên của dãy là:

2004 - 2 x (96 - 1) = 1814

21 tháng 4 2016

Gọi 4 số cần tìm là \(a_1,a_2,a_3,a_4\). Theo đầu bài ta có hệ :

\(\begin{cases}a_2^2=a_1a_3\\2a_3=a_2+a_4\\a_1+a_4=14\\a_2+a_3=12\end{cases}\) \(\Leftrightarrow\begin{cases}2a_1q^2=a_1q+a_2+d\left(1\right)\\a_1+a_2+d=14\left(2\right)\\a_1q+a_1q^2=12\left(3\right)\\a_2+a_2+d=12\left(4\right)\end{cases}\)

                          \(\Leftrightarrow\begin{cases}a_2^2=a_1\left(a_2+d\right)\left(5\right)\\a_2+2d=14-a_1\\a_1=\frac{12}{q+q^2}\\d=12-2a_2\end{cases}\)

Giải hệ thống các phương trình ta có kết quả \(\left(2,4,8,12\right)\left(\frac{25}{2},\frac{15}{2}\frac{9}{2}\frac{3}{2}\right)\)

 

2 tháng 3 2019

* Dãy số đã cho có số đầu là: 8; số hạng cuối là 100

Hai số liên tiếp của dãy cách nhau 4 đơn vị.

* Số số hạng của dãy số đã cho là:

(100 - 8) : 4 +1 = 24 số.

+ Tổng của dãy số là:

8 + 12 + 16 + 20 + ... + 100 = (8 + 100).24 : 2

= 108.24 : 2 = 1296

24 tháng 5 2015

3.Ta được:
Số hạng cuối cùng = 1 + (200 - 1) X2 = 399

25 tháng 5 2015

Số đầu tiên của dãy số là 1001, số liền sau là 1011 nên số tiếp sau là 1021 .

 Hiệu hai số liền nhau là : 1011 -1001 = 1021 -1011 = 10 ( đơn vị)

 Từ số hạng đầu đến số hạng thứ 101 có số khoảng cách là : 10 x 100 = 1000 (đơn vị)

Số hạng cuối cùng là :1001 + (101 – 1) x 10 = 2001

6 tháng 10 2019

blah blah blah...

blah blah blah ...

blah blah blah ...

ko can k dau!

9 tháng 10 2019

Bài 2:

Gọi số hạng đầu là X, số hạng cuối là Y, số lượng số hạng là Z, tổng là A và khoảng cách là B. Áp dụng 2 công thức dưới đây, bạn sẽ giải được dạng bài toán này:

1. Tính tổng:      A = (X + Y) x Z : 2 (1)

2. Tính số lượng số hạng:    Z =  (Y - X) : B (2)

Điền dữ liệu đầu bài vào (1) và (2) ta có:

3400 = (X + Y) x 10 : 2  ==> X + Y = 680 (1)

10 = (Y - X) : 10 +1   ==> Y - X = 90 (2)

Từ (1) và (2) suy ra: X + Y + Y - X = 680 + 90 ==> Y = 385, X = 295.

3 tháng 10 2018

Chọn D 

Gọi 4 số phải tìm là a1, a2, a3, a4. Theo đầu bài Ta có hệ:

Giải các hệ phương trình Ta có kết quả a1=2, a2=4, a3=8 và a4=12

Chọn D