K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

y ' = 2 2 − 3 x 2 x + 1 . 2 − 3 x 2 x + 1 ' = 2 2 − 3 x 2 x + 1 . − 3 2 x + 1 − 2 2 − 3 x 2 x + 1 2 =    2 2 − 3 x 2 x + 1 . − 7 2 x + 1 2 = − 14 2 x + 1 2 . 2 − 3 x 2 x + 1

Chọn đáp án A

\(y'=2\cdot\left(sinx\right)'\cdot sinx+3\cdot\left(-2x\right)\cdot sin2x\)

\(=2cosx\cdot sinx-6x\cdot sin2x=sin2x\cdot\left(1-6x\right)\)

19 tháng 4 2021

1/ \(y'=\left(1-3x\right)'\sqrt{x-3}+\left(1-3x\right)\left(\sqrt{x-3}\right)'=-3\sqrt{x-3}+\dfrac{1}{2\sqrt{x-3}}\left(1-3x\right)\)

2/ \(y'=\dfrac{1}{\sqrt{2x+1}}-\dfrac{1}{\left(x+1\right)^2}\)

3/ \(y'=\dfrac{1}{2}.\sqrt{\dfrac{1+x}{1-x}}.\left(\dfrac{1-x}{1+x}\right)'=\dfrac{1}{2}\sqrt{\dfrac{1+x}{1-x}}.\dfrac{-2}{\left(1+x\right)^2}=-\sqrt{\dfrac{1+x}{1-x}}.\dfrac{1}{\left(1+x\right)^2}\)

4/ \(y'=\left(\cos5x\right)'.\cos7x+\cos5x.\left(\cos7x\right)'=-5\sin5x.\cos7x-7\cos5x\sin7x\)

5/ \(y'=\left(\cos x\right)'\sin^2x+\cos x\left(\sin^2x\right)'=-\sin^3x+2\sin x.\cos^2x\)

6/ \(y'=\left(\tan^42x\right)'=4.\tan^32x.\dfrac{2}{\cos^22x}\)

7/ \(y'=\dfrac{2\sin x+2\cos x-2x.\cos x+2x\sin x}{\left(\sin x+\cos x\right)^2}\)

Ờm, bạn tự rút gọn nhé :) Mình đang hơi lười :b

1 tháng 3 2017

\(\sqrt[n]{y}=4x+1\)

\(y^{\dfrac{1}{n}}=4x+1\)

đạo cấp 1

\(\dfrac{1}{n}y^{\left(\dfrac{1}{n}-1\right)}=\dfrac{1}{n}\sqrt[n]{y^{\left(1-n\right)}}=4\)

thay y=(4x+1)^n vào

\(\dfrac{1}{n}\sqrt[n]{\left(4x+1\right)^{n\left(1-n\right)}}=\dfrac{1}{n}\left(4x+1\right)^{\left(1-n\right)}\)

từ đó: \(y'=\dfrac{4}{\dfrac{1}{n}\left(4x+1\right)^{\left(1-n\right)}}=4.n\left(4x+1\right)^{n-1}\)

Có đúng không: cấp n có thể phải làm lấy vài cái--> quy luật nào đó

27 tháng 4 2023

\(x'\cdot\left(x+2\right)^3+x\left[\left(x+2\right)^3\right]'\)

\(=1\cdot\left(x+2\right)^3+x\cdot3\left(x+2\right)^2+\left(x+2\right)'\)

\(=\left(x+2\right)^3+3x\left(x+2\right)^2\)

\(=\left(x+2\right)^2\left(4x+2\right)\)

20 tháng 2 2023

loading...  

NV
23 tháng 10 2021

\(y=\dfrac{2x-1}{x+m}\Rightarrow y'=\dfrac{2m+1}{\left(x+m\right)^2}\)

Hàm nghịch biến trên miền xác định khi:

\(2m+1< 0\Rightarrow m< -\dfrac{1}{2}\)