Giải PT:
a/ \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)
b/ (x−7)(x−2)(x−4)(x−5)=72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{9x}{x^2-7x+10}=10\)
\(\Leftrightarrow\frac{3x^2-15x-x^2+2x+9x}{\left(x-2\right)\left(x-5\right)}=10\)
\(\Leftrightarrow2x^2-4x=10x^2-70x+100\)
\(\Leftrightarrow8x^2-66+100=0\)
\(\Leftrightarrow4x^2-33x+50=0\)
\(\Leftrightarrow4x\left(x-2\right)-25\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-25\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{25}{4}\end{matrix}\right.\)
b) [(x-7)(x-2)][(x-4)(x-5)]=72
<=> (x2-9x+14)(x2-9x+20)=72
Đặt x2-9x+17=a
=> (a+3)(a-3)=72
<=> a2-9=72
<=> a2=81
=> a=\(\left\{9;-9\right\}\)
TH1: a=9
=> x2-9x+17=9
<=> x2-9x+8=0
<=> (x-1)(x-8)=0
=> x=\(\left\{1;8\right\}\)
TH2: a=-9
=> x2-9x+17=-9
<=> x2-9x+26=0
<=> x2-9x+20,25+5,75=0
<=> (x-4,5)2+5,75=0
=> x\(\in\varnothing\)
Vậy x=\(\left\{1;8\right\}\)
a) \(\frac{x+\frac{2\left(3-x\right)}{5}}{14}-\frac{5x-4\left(x-1\right)}{24}=\frac{7x+2+\frac{9-3x}{5}}{12}+\frac{2}{3}\)
<=> \(\frac{5x+2\left(3-x\right)}{70}-\frac{5x-4\left(x-1\right)}{24}=\frac{35x+10+9-3x}{60}+\frac{2}{3}\)
<=> \(12\left(5x+6-2x\right)-35\left(5x-4x+4\right)\)
<=> \(14\left(35x+10+9-3x\right)+280.2\) <=> \(12\left(3x+6\right)-35\left(x+4\right)\)
<=> \(14\left(32x+19\right)+560\)
<=> \(36x+72-35x-140=448x+226+560\)
<=> \(-447x=894\)
<=> x = -2
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(\left(10x+3\right):8=\left(7-8x\right):12\)
\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)
\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)
\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)
\(\frac{23}{12}x=\frac{5}{24}\)
\(x=\frac{5}{46}\)
E mới lớp 6 nên giải sai thì thông cảm ạ UwU
\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)
\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)
\(< =>\frac{x}{45}=\frac{32}{45}\)
\(< =>x=32\)
\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)
\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)
\(< =>120x+36=56-64x\)
\(< =>184x=56-36=20\)
\(< =>x=\frac{20}{184}=\frac{5}{46}\)
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
\(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)
\(\Rightarrow\frac{3x^2-15x-x^2+2x+9x}{x^2-7x+10}=10\)
\(\Rightarrow\frac{2x^2-4x}{x^2-7x+10}=10\)
\(\Rightarrow2x^2-4x=10x^2-70x+100\)
\(\Rightarrow8x^2-66x+100=0\)
Ta có \(\Delta=66^2-4.8.100=1156,\sqrt{\Delta}=34\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{66+34}{16}=\frac{25}{4}\\x=\frac{66-34}{16}=2\end{cases}}\)
a) \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)
<=> \(\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\frac{9x}{\left(x-2\right)\left(x-5\right)}=10\)
<=> \(\frac{3x^2-15x-x^2+2x+9x}{\left(x-5\right)\left(x-2\right)}=10\)
<=> \(\frac{2x^2-4x}{\left(x-5\right)\left(x-2\right)}=10\)
<=> \(\frac{2x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}=10\)
<=> \(2x=10\left(x-5\right)\)
<=> 2x - 10x = -50
<=> -8x = -50
<=>x = 6,25
Vậy S = {6,25}
b) (x - 7)(x - 2)(x - 4)(x - 5) = 72
<=> (x2 - 9x + 14)(x2 - 9x + 20) = 72
Đặt x2 - 9x + 14 = t <=> t(t + 6) = 72
<=> t2 + 6t - 72 = 0
<=> t2 + 12t - 6t - 72 = 0
<=> (t + 12)(t - 6) = 0
<=> \(\orbr{\begin{cases}t+12=0\\t-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x^2-9x+14+12=0\\x^2-9x+14-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-9x+20,25\right)+5,75=0\\x^2-9x+8=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-4,5\right)^2+5,75=0\left(vn\right)\\x^2-x-8x+8=0\end{cases}}\)
<=> (x - 1)(x - 8) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=8\end{cases}}\)
Vậy S = {1; 8}