Tìm x thuộc Z
a,(x-3).(2y +1) =7
b,(2x+1).(3y-2)=-55
Giúp mình nhanh với ai nhanh. Mình tik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
+ Nếu x = 6
\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)
+ Nếu x = 4
\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)
b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{4}{3}\)
Thay vào ta được:
\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)
\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)
\(\Leftrightarrow14y=-4\)
\(\Rightarrow y=-\frac{2}{7}\)
Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)
a) | 2x - 6 | = 2x + 4 ( ĐK : 2x + 4 \(\ge\)0 <=> x \(\ge\)\(\frac{-4}{2}\) )
=> \(\orbr{\begin{cases}2x-6=2x+4\\2x-6=-2x-4\end{cases}}\)=>\(\orbr{\begin{cases}2x-2x=6+4\\2x+2x=-4+6\end{cases}}\)=> \(\orbr{\begin{cases}0x=10\\4x=2\end{cases}}\)=>\(\orbr{\begin{cases}x\in\varnothing\\x=2\end{cases}}\)
Đối chiếu vs điều kiện, ta có x e { 2 }
b) | 2x -1 | = | x + 5|
=>\(\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)=>\(\orbr{\begin{cases}2x-x=1+5\\2x+x=-5+1\end{cases}}\)=>\(\orbr{\begin{cases}x=6\\3x=-4\end{cases}}\)=>\(\orbr{\begin{cases}x=6\\x=\frac{-4}{3}\end{cases}}\)
Vậy x e { 6 ; \(\frac{-4}{3}\)}
Xin lỗi, ở bài a) \(\orbr{\begin{cases}x\in\varnothing\\4x=2\end{cases}}\)=>\(\orbr{\begin{cases}x\in\varnothing\\x=\frac{2}{4}\end{cases}}\)
Đối chiếu với Đk , ta có x e \(\varnothing\)
Còn bài b) là OK rồi
a)vì x;y thuộc Z
suy ra x-3;2y+1 thuộc Z
suy ra x-3;2y+1 thuộc Ư(7)
Ta có bảng :
x-3 | 1 | -1 | 7 | -7 |
2y+1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
Vậy (x;y) thuộc \(\left\{\left(4;3\right);\left(2;-4\right);\left(10;0\right);\left(-4;-1\right)\right\}\)
câu b tương tự nha bạn!!! K CHO MINK NHÉ
2) Ta có: \(\left(2x+1\right).\left(3y-2\right)=-55=\left(-1\right).55=1.\left(-55\right)=\left(-5\right).11=5.\left(-11\right)\)
- Ta có bảng giá trị:
\(2x+1\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(55\) |
\(3y-2\) | \(1\) | \(5\) | \(11\) | \(55\) | \(-55\) | \(-11\) | \(-5\) | \(-1\) |
\(x\) | \(-28\) | \(-6\) | \(-3\) | \(-1\) | \(0\) | \(2\) | \(5\) | \(27\) |
\(y\) | \(1\) | \(\frac{7}{3}\) | \(\frac{13}{3}\) | \(19\) | \(-\frac{53}{3}\) | \(-3\) | \(-1\) | \(\frac{1}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-28,1\right);\left(-1,19\right);\left(2,-3\right);\left(5,-1\right)\right\}\)
3) Ta có: \(\left(x-2\right).\left(y+3\right)=5=\left(-1\right).\left(-5\right)=1.5\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y+3\) | \(-5\) | \(5\) | \(-1\) | \(1\) |
\(x\) | \(1\) | \(3\) | \(-3\) | \(7\) |
\(y\) | \(-8\) | \(2\) | \(-4\) | \(-2\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(1,-8\right);\left(3,2\right);\left(-3,-4\right);\left(7,-2\right)\right\}\)
4) Ta có: \(\left(2x+3\right).\left(y-5\right)=10=\left(-1\right).\left(-10\right)=1.10=\left(-2\right).\left(-5\right)=2.5\)
- Vì \(x\in Z\)mà \(2x+3\)là số lẻ \(\Rightarrow\)\(2x+3\in\left\{-1,1,-5,5\right\}\)
- Ta có bảng giá trị:
\(2x+3\) | \(-1\) | \(1\) | \(-5\) | \(5\) |
\(y-5\) | \(-10\) | \(11\) | \(-2\) | \(2\) |
\(x\) | \(-2\) | \(-1\) | \(-4\) | \(1\) |
\(y\) | \(-5\) | \(16\) | \(3\) | \(7\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(\left(x,y\right)\in\left\{\left(-2,-5\right);\left(-1,16\right);\left(-4,3\right);\left(1,7\right)\right\}\)
Ta có \(xy\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
<=>\(x\left(x^2y^3-2x^2y-y+4y^2+2\right)=1\)
=> \(x^2y^3-2x^2y-y+4y^2+2=\frac{1}{x}\)
Do VT là số nguyên với x,y nguyên
=> \(\frac{1}{x}\)nguyên => \(x=\pm1\)
+ \(x=1\)=> \(y^3-3y+4y^2+1=0\)( không có nghiệm nguyên)
+ x=-1
=> \(y^3-3y+4y^2+3=0\)( không có nghiệm nguyên )
=> PT vô nghiệm
Vậy PT vô nghiệm
bạn vào link này nhé
https://olm.vn/hoi-dap/detail/245276481296.html
a,(x-3).(2y +1) =7
Vì x;y thuộc Z => x-3 và 2y+1 ltuộc Z
=> x-3 và 2y+1 Thuộc Ư(7)
Ta có bảng:
-1
Vậy..........................................................................................
b,(2x+1).(3y-2)=-55
Vì x;y là số nguyên=>2x+1;3y-2 là số nguyên
=> 2x+1;3y-2 thuộc Ư(-55)
-3
Vậy........................................................................