Tìm giá trị của k để 2 phương trình sau tương đương với nhau :
\(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\) và \(\left(k+1\right)x+k=26\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình: \(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{3}+\frac{x}{3}+\frac{2x-1}{5}=4\)
\(\Leftrightarrow x+\frac{2x-1}{5}=4\Leftrightarrow\frac{5x+2x-1}{5}=4\)
\(\Leftrightarrow7x-1=20\Leftrightarrow x=3\)
Để hai phương trình \(\frac{2x}{3}+\frac{2x-1}{5}=4-\frac{x}{3}\)và \(\left(k+1\right)x+k=26\)tương đương thì:
x = 3 là nghiệm của \(\left(k+1\right)x+k=26\)
\(\Rightarrow3\left(k+1\right)+k=26\Leftrightarrow3k+3+k=26\)
\(\Leftrightarrow4k=23\Leftrightarrow k=\frac{23}{4}\)
Vậy \(k=\frac{23}{4}\)thì hai phương trình trên tương đương
Tìm các giá trị của k để phương trình nghiệm âm:
\(\frac{1-x}{k-1}-\frac{x+1}{k+1}=\frac{2x}{1-k^2}\)
\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}=1\)
\(\Leftrightarrow\left(k-1\right)x=2-k\)
Với \(k=1\) thì phương trình vô nghiệm
Với \(k\ne1\)thì
\(x=\frac{2-k}{k-1}>0\)
\(\Leftrightarrow1< k< 2\)
Hướng dẫn:
Giải pt đầu tiên => nghiệm x0 (nghiệm ngày bạn tự tìm)
Thay vào pt sau: (k+1)x + k =26
Tức là (k+1) x0 +k =26 . Từ đó tìm k.