Tính a²+b² biết : a) a+b=3 và a.b=-10 b) a-b=2 và a.b=24
Giúp mình nha, mai phải nộp rồi 😊😊
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;\)Từ \(\left(a+b\right)=-7\Rightarrow\left(a+b\right)^3=-343\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3=-343\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-343\)
\(\Rightarrow a^3+b^3=-343-3.6.\left(-7\right)=-217\)
\(x^2+y^2=\left(x+y\right)^2-2xy=7^2-2.10=29\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=7^3-3.10.7=133\)
\(P=\left(x+y\right)\left(x^2+y^2\right)\left(x^3+y^3\right)\)
\(=7.29.133=26999\)
a) a^3+b^3
=(a+b).(a^2-ab+b^2)
=S.(a^2+2ab+b^2-3ab)
=S.(a+b)^2-3ab
=S.S^2-3P
=S^3-3P
Vì \(ƯCLN\left(a,b\right)=10\)
\(\Rightarrow\)đặt \(a=10q\) (1) ( k,q) = 1
dặt \(b=10k\)(2)
Ta có: \(a.b=1200\)
\(\Rightarrow10q.10k=1200\)
\(\Rightarrow100qk=1200\)
\(\Rightarrow qk=12\)(3)
\(\Rightarrow\left(q,k\right)=\left(1,12\right);\left(2,6\right);\left(3,4\right);\left(4,3\right);\left(6;2\right);\left(12;1\right)\)
Mà ƯCLN(k,q) = 1 \(\Rightarrow\left(k,q\right)=\left(1,12\right);\left(3,4\right);\left(4,3\right);\left(12,1\right)\) (4)
Từ (1), (2), (3) và (4), ta có bảng sau:
q | 1 | 3 | 4 | 12 |
k | 12 | 4 | 3 | 1 |
a | 10 | 30 | 40 | 120 |
b | 120 | 40 | 30 | 10 |
Vậy (a,b) =(10,120) ;(30,40) ; (40,30) ; (120,10)
1) a + b = - 12 và ab = 20
a; b là nghiệm của phương trình: \(X^2-\left(-12\right)X+20=0\)
hay \(X^2+12X+20=0\)
Giải delta tìm được nghiệm: \(X=-2\) hoặc \(X=-10\)
Vậy hai số ( a; b ) = ( -2; -10) hoặc ( a; b ) = ( -10 ; -2)
Các bài còn lại đưa về tổng và tích rồi làm như câu 1.
a) \(\hept{\begin{cases}a+b=-12\\a.b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=-b-12\\\left(-b-12\right).b=20\end{cases}}}\)
\(\hept{\begin{cases}a=-b-12\\b^2+12b+20=0\end{cases}\Rightarrow\hept{\begin{cases}b=-2;a=-10\\b=-10;a=-2\end{cases}}}\)
b) \(\hept{\begin{cases}a^2+b^2=25\\ab=24\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\2ab=48\end{cases}}}\)
=> \(a^2+b^2-2ab=-23\)\(\Leftrightarrow\left(a-b\right)^2=-23\)(vô lý)
=> Hệ vô nghiệm
2 ý còn lại tương tự nha bn ơi
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)