giúp mk giải bài này với ạ
Cho tam giác ABC vuông tại B ( AB < BC).Vẽ đường cao BH ( H thuộcAC). Lấy điểm E đối xứng với A qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác AHB
b) Qua C dựng đường thẳng vuông góc với tia BE cắt BE tại D.Chứng minh BH.CE = CD.BE
c) Chứng minh tam giác HDE đồng dạng với tam giác BCE
d) Cho AB = 3cm, BC = 4cm. Tính diện tích tam giác DEC.
e) BH cắt CD tại F. Chứng minh tứ giác ABEF là hình thoi.
a.\(\Delta\)ABC và \(\Delta\)AHB đồng dạng ( g.g )
b.Ta có:\(\Delta\)BEH và \(\Delta\)CED đồng dạng ( g.g ) nên \(\frac{BE}{CE}=\frac{BH}{CD}\Rightarrow BH\cdot CE=CD\cdot BE\)
c.Do \(\Delta\)BEH và \(\Delta\)CED đồng dạng ( g.g ) nên \(\frac{HE}{ED}=\frac{EC}{EB}\)
Xét \(\Delta\)HDE và \(\Delta\)BCE có:^BEC=^HED ( đối đỉnh );\(\frac{HE}{ED}=\frac{EC}{EB}\) nên \(\Delta\)HDE và \(\Delta\)BCE đồng dạng ( c.g.c )
d.
C1:
Áp dụng định lý Pythagoras có \(AC=\sqrt{3^2+4^2}=5\left(cm\right)\)
Ta có:\(\Delta\)AHB và \(\Delta\)ABC đồng dạng ( g.g ) nên \(\frac{AH}{AB}=\frac{HB}{BC}=\frac{AB}{AC}\Rightarrow AB^2=AC\cdot AH\Rightarrow AH=\frac{9}{5}\left(cm\right)\)
\(\Rightarrow HE=\frac{9}{5}\left(cm\right)\Rightarrow EC=5-\frac{9}{5}-\frac{9}{5}=\frac{7}{5}\)
Ta có:\(\frac{EB}{EH}=\frac{EC}{ED}\Rightarrow ED=\frac{EC\cdot EH}{EB}=\frac{63}{75}\)
Đến đây áp dụng pythagoras tính được DC,từ đó áp dụng công thức tính được SDEC
C2:
Tỉ số diện tích bằng bình phương tỉ số đồng dạng:\(\frac{S_1}{S_2}=\left(\frac{BE}{CE}\right)^2\)
Trong cách 1 mình đã tính CE rồi,bạn chỉ cần thay vào rồi tính là OK
e
Chứng minh được \(\Delta\)HBA và \(\Delta\)DCE đồng dạng (g.g) nên
\(\frac{HB}{DC}=\frac{BA}{CE}=\frac{AH}{ED}\Rightarrow BH\cdot CE=BA\cdot DC=BE\cdot CD\) ( 1 )
Mặt khác:\(\Delta\)BEH và \(\Delta\)CED đồng dạng ( g.g ) nên
\(\frac{BE}{CE}=\frac{EH}{ED}=\frac{HB}{CD}\Rightarrow BH\cdot CE=BE\cdot CD\) ( 2 )
Từ ( 1 );( 2 ) suy ra CE là phân giác góc BCD
Mà trong tam giác BCF có CH vừa là đường cao vừa là đường trung tuyến nên tam giác BCF cân tại F
=> CH là đường trung trực của BF mà E thuộc HC nên BE=EF mà AB=BE nên AB=BE=EF
Dễ chứng minh:AF=BE ( 2 tam giác bằng nhau ) nên AB=BC=AF=EF hay ABEF là hình thoy
P/S:Khá mỏi tay,hihi