Bài 1. Cho ABC cân tại C. Các đường trung trực của CA và CB cắt nhau tại I. Chứng minh: CI là tia phân giác của góc C.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có tam giác ABC cân tại C suy ra CA=CB ( t/c ) ; ta có CM=MA = CA/2 (gt) , CN=NB = CB/2 (gt) Mà CA=CB suy ra CM=CN
xét tam giác CIN và tam giác CIM , có : góc N = góc M =90o, CI chung , CN=CM suy ra 2 tam giác = nhau theo trường hợp (ch-gn)
b, vì tam giác CIM = tam giác CNI (cmt) suy ra góc MCI = góc NCI (2 góc tương ứng )
suy ra CI là phân giác của góc C
c, xét tam giác CKA và tam giác CKB , có : góc C1 = góc C2 ( cmt),CA=CB ( t/c tam giác cân ) ,góc A= góc B ( t/c tam giác cân ) suy ra 2 tam giác = nhau theo trường hợp( g-c-g ) suy ra góc K1 = góc K2 ( góc tương ứng ) Mà góc K1 + góc K2 = 180o ( kề bù ) suy ra góc K1=góc K2= 180o/2 =90o suy ra CK vuông góc với AB ( 1 ) tam giác CKA = CKB (cmt) suy ra KA=KB (cạnh tương ứng ) ( 2 )
từ (1) và (2 ) suy ra CK hay CI là đường trung trực của AB
Xét \(\Delta ICE\)và \(\Delta ICF\)có :
\(\widehat{E}=\widehat{F}=90^0\)
CI chung
CE = CF(vì \(CE=\frac{1}{2}AC,CF=\frac{1}{2}CB\)mà CB = AC(\(\Delta\)cân tại C))
=> \(\Delta ICA=\Delta ICF\left(ch-cgv\right)\)
=> \(\widehat{C}_1=\widehat{C}_2\)
=> CI là tia phân giác của góc C
omg ez vay