Cho tam giác ABC vuông tại A (AB>AC), có đường cao AH.
1. Cho AB=4cm, AC=3cm. Tính độ dài các đoạn thẳng BC, AH.
2. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường trong C tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn C.
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của đường tròn C lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với đường tròn C cắt AB, BD lần lượt tại P, Q. Chứng minh: 2\(\sqrt{PE.QF}\) =EF