Câu 4. Cho a,b,c là ba số thực dương . Chứng minh rằng \(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Nhân 2 vế của \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\) có: \(ab+bc+ca=abc\)
Ta có:
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{a+bc}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+c}{8}\)
\(\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(a+c\right)}\cdot\frac{a+b}{8}\cdot\frac{a+c}{8}}=\frac{3a}{4}\)
Tương tự cho 2 BĐT còn lại ta có:
\(\frac{b^2}{b+ca}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3b}{4};\frac{c^2}{c+ab}+\frac{a+c}{8}+\frac{b+c}{8}\ge\frac{3c}{4}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow VT+\frac{4\left(a+b+c\right)}{8}\ge\frac{6\left(a+b+c\right)}{8}\)
\(\Leftrightarrow VT\ge\frac{a+b+c}{4}=VP\). Ta có ĐPCM
Vào thống kê hỏi đáp xem nhé. Bài này chỉ cần biểu diễn dưới dạng tổng bình phương là xong.
ta có \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\) (***)
do ab+bc+ca=3 nên
VT (***)=\(\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)
\(=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(a+b\right)\left(c+a\right)}\)
áp dụng bđt AM-GM ta có \(\frac{a^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge\frac{3a}{4}\)
\(\Rightarrow\frac{a^3}{\left(b+c\right)\left(c+a\right)}\ge\frac{5a-2b-c}{8}\left(1\right)\)
chứng minh tương tự ta cũng được
\(\hept{\begin{cases}\frac{b^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{5b-2c-a}{8}\left(2\right)\\\frac{c^3}{\left(a+b\right)\left(c+a\right)}\ge\frac{5c-2a-b}{8}\left(3\right)\end{cases}}\)
cộng theo vế với vế của (1),(2) và (3) ta được VT (***) \(\ge\frac{a+b+c}{4}\)
mặt khác ta dễ dàng chứng minh được \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)
đẳng thức xảy ra khi a=b=c=1 (đpcm)
Áp dụng BĐT AM-GM ta có: \(\frac{a}{b^3+ab}=\frac{1}{b}-\frac{b}{a+b^2}\ge\frac{1}{b}-\frac{b}{2\sqrt{ab^2}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}\ge\frac{1}{b}-\frac{1}{4}\left(\frac{1}{a}+1\right)\)
Tương tự có: \(\hept{\begin{cases}\frac{b}{c^3+ca}\ge\frac{1}{c}-\frac{1}{4}\left(\frac{1}{b}+1\right)\\\frac{c}{a^3+ca}\ge\frac{1}{a}-\frac{1}{4}\left(\frac{1}{c}+1\right)\end{cases}}\)
Cộng 3 vế BĐT ta được: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
Bài toán quy về chứng minh \(\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\Leftrightarrow\left(\frac{1}{a}+a\right)\left(\frac{1}{b}+b\right)\left(\frac{1}{c}+c\right)\ge3+a+b+c=6\)
BĐT cuối hiển nhiên đúng vì theo BĐT AM-GM ta có:
\(\hept{\begin{cases}\frac{1}{a}+a\ge2\\\frac{1}{b}+b\ge2\\\frac{1}{c}+c\ge2\end{cases}}\)
Dấu "=" xảy ra <=> a=b=c=1
\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\)
\(=\frac{a}{b\left(b^2+a\right)}+\frac{b}{c\left(c^2+b\right)}+\frac{c}{a\left(a^2+c\right)}\)
\(=\frac{1}{b}-\frac{b}{b^2+a}+\frac{1}{c}-\frac{c}{c^2+b}+\frac{1}{a}-\frac{a}{a^2+c}\)
\(\ge\frac{1}{b}-\frac{b}{2b\sqrt{a}}+\frac{1}{c}-\frac{c}{2c\sqrt{b}}+\frac{1}{a}-\frac{a}{2a\sqrt{c}}\)
\(=\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\frac{1}{4}\left(\frac{1}{b}-\frac{2}{\sqrt{b}}+1\right)+\frac{1}{4}\left(\frac{1}{c}-\frac{1}{\sqrt{c}}+1\right)\)\(-\frac{3}{4}\)
\(\ge\frac{3}{4}.\frac{9}{a+b+c}+\frac{1}{4}\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2-\frac{3}{4}\)
\(\ge\frac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1.
ta có a+bc=a(a+b+c)+ab=(a+b)(a+c)
tương tự b+ca=(b+c)(a+b)
c+ab=(a+c)(b+c)
ad bđt cô si cho 3 số dương ta có
a^3/(a+b)(a+c)+a+b/8+a+c/8 >=3a/4
tương tự bạn lm tiếp nhé
Cho a,b,c là các số thực dương . Chứng minh rằng
\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Áp dụng bđt Cauchy-schwarz dạng engel và bđt \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\) ta có:
\(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}=\frac{a^2b^2}{abc}+\frac{b^2c^2}{abc}+\frac{c^2a^2}{abc}\ge\frac{\left(ab+bc+ca\right)^2}{3abc}\ge\frac{3\left(ab^2c+abc^2+a^2bc\right)}{3abc}=a+b+c\)
Dấu "=" \(\Leftrightarrow a=b=c\)
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Let \(D=\left(a+b\right)\left(b+c\right)\left(c+a\right)\). Clearly \(D>0\). We show that the difference between the left-hand side and the right-hand of the inequality is non-negative
\(\frac{a^2+bc}{b+c}-a+\frac{b^2+ca}{c+a}-b+\frac{c^2+ab}{a+b}-c\)
\(=\frac{a^2+bc-ab-ac}{b+c}+\frac{b^2+ac-ab-bc}{a+c}+\frac{c^2+ab-ac-bc}{a+b}\)
\(=\frac{\left(a-b\right)\left(a-c\right)}{b+c}+\frac{\left(b-a\right)\left(b-c\right)}{a+c}+\frac{\left(c-a\right)\left(c-b\right)}{a+b}\)
\(=\frac{\left(a^2-b^2\right)\left(a^2-c^2\right)+\left(b^2-a^2\right)\left(b^2-c^2\right)+\left(c^2-a^2\right)\left(c^2-b^2\right)}{D}\)
\(=\frac{a^4+b^4+c^4-b^2c^2-c^2a^2-a^2b^2}{D}\)
\(=\frac{\left(a^2-b^2\right)^2+\left(b^2-c^2\right)^2+\left(c^2-a^2\right)^2}{2D}\ge0\)
Equality holds if and only if \(a=b=c\)
Done !
Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)
Khi đó bất đẳng thức được viết lại thành :
\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)
Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)
Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2
<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )
Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )
Đẳng thức xảy ra <=> a=b=c
bài này mới được thầy sửa hồi chiều nè @@
Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )
BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )
Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)
Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)
Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)
Lời giải:
Áp dụng BĐT Cô-si cho các số thực dương ta có:
$\frac{ab}{c}+\frac{bc}{a}\geq 2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b$
$\frac{ab}{c}+\frac{ca}{b}\geq 2a$
$\frac{bc}{a}+\frac{ca}{b}\geq 2c$
Cộng theo vế và thu gọn ta có:
$\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\geq a+b+c$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$