K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

em nhanh đưa cho cô mật khẩu của em đi olm đang nghi em gian lận và sễ khoa ních em đó 

10 tháng 5 2022

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 tháng 10 2017

A=(7^0+7)+(7^2+7^3)+...+(7^100+7^101)

=7^0*(1+7)+7^2*(1+7)+7^100*(1+7)

=>A=8*(7^0+7^2+7^100) chia hết cho 8(đpcm)..

14 tháng 8 2016

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

Đáp số: n=28.

12 tháng 10 2017

1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.

2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )

3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13

Được cập nhật Bùi Văn Vương 

1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)

Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16

Do đó, n là ước chung của 980 và 616.

Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.

Suy ra n là ước của 28.

Mà n>16 nên n=28.

6 tháng 12 2017

a) Ta có:

\(5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)

Vậy \(n\in\left\{0;4\right\}\)

b) Ta có:

\(15⋮n+1\)

\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)

Vậy \(n\in\left\{0;2;4;14\right\}\)

c) Ta có:

\(n+3⋮n+1\)

\(\Rightarrow\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{0;1\right\}\)

d) Ta có:

\(4n+3⋮2n+1\)

\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)

\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow2n+1=1\)

\(\Rightarrow n=0\)

Vậy \(n=0\)