K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 2 2020

a/ Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\\Delta'=m^2-3m\left(m+2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m^2+3m>0\end{matrix}\right.\) \(\Rightarrow m>0\)

b/ Để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< -2\\m^2+3m\ge0\end{matrix}\right.\) \(\Rightarrow m\le-3\)

Vậy để BPT có nghiệm thì \(m>-3\)

18 tháng 2 2019

a, Pt có nghiệm \(x=\sqrt{2}\) tức là

\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)

\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)

b, *Với m = 4 thì pt trở thành

\(\left(4-4\right)x^2-2.4.x+4-2=0\)

\(\Leftrightarrow-8x+2=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Pt này ko có nghiệm kép

*Với \(m\ne4\)thì pt đã cho là pt bậc 2

Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)

Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)

                     

                           \(\Leftrightarrow m=\frac{4}{3}\)

Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)

Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)

c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)

                                             \(\Leftrightarrow-6m+8>0\)

                                             \(\Leftrightarrow m< \frac{4}{3}\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

PT thì phải là $(m+1)x^2-2mx+2m=0$ nhé bạn chứ không có =0 thì không phải pt.

Lời giải:

TH1: $m=-1$ thì PT có nghiệm duy nhất $x=1$ $(*)$

----------------------------------------

TH2: $m\neq -1$ thì PT là PT bậc 2 ẩn $x$

$\Delta'=-m(m+2)$

PT có nghiệm khi $\Delta'=-m(m+2)\geq 0\Leftrightarrow -2\leq m\leq 0$

PT vô nghiệm khi $\Delta'=-m(m+2)<0\Leftrightarrow m< -2$ hoặc $m>0$

PT có 2 nghiệm pb khi $\Delta=-m(m+2)>0\Leftrightarrow -2< m< 0$

Như vậy, kết hợp 2 TH ta có:

PT ban đầu có nghiệm khi $-2\leq m\leq 0$

PT ban đầu vô nghiệm khi $m<-2$ hoặc $m>0$

PT ban đầu có 2 nghiệm phân biệt khi $-2< m< 0$ và $m\neq -1$

23 tháng 8 2021

avt 5*

27 tháng 1 2016

Với x = t + 2 ta có

f(t) = \(\left(t+2\right)^2-2\left(m+2\right)\left(t+2\right)+6m+1\)

Tự rút gọn nha 

Gọi x1 ; x2 là nghiệm pt f(x) = 0 => t1= x1 - 2 ; t2 = x2 - 2 

PT có hai nghiệm lớn hơn hai khi x1 ; x2 > 2 => x1 - 2 >0 ; x2  -  2 > 0 

=> t1;t2> 0 => pt f(t) = 0 có hai nghiệm phân biệt dương 

tự làm tiếp nha  

28 tháng 1 2016

kho

27 tháng 7 2017

đặt x^2 = y => y > = 0
phương trình đc viết lại : y^2 + 2my + m+ 12 = 0    (2)

để pt có 1 nghiệm thì pt 2 phải có 1 nghiệm = 0 và 1 nghiệm nhỏ hơn hoặc bằng 0

để pt có 2 nghiệm => pt (2) có 2 nghiệm trái dấu hoặc có nghiệm kép dương

để pt có 3 nghiệm => pt(2) có 1 nghiệm dương và 1 nghiệm bằng 0

để pt có 4 nghiệm => pt 2 phải có 2 nghiệm dương phân biệt

28 tháng 4 2020

Hướng dẫn:

\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)

TH1:  m - 2 = 0 <=> m = 2 

khi đó phương trình trở thành: \(-3x^2+4=0\)

<=> \(x=\pm\frac{2}{\sqrt{3}}\)

TH2: m khác 2

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)

có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)

+) Phương trình (1)  vô nghiệm <=> phương trình (2) vô nghiệm 

<=> \(\Delta\)<0  ( tự giải ra) 

+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không ) 

+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương

Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)

<=> m = - 2 

Thay vào phương trình (2) : \(-4t^2-3.t=0\)

<=> \(t\left(4t+3\right)=0\)

<=> t = 0 

=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm 

+) Phương trình (1) có 2 nghiệm  <=>phuowng trình (2) có 2 nghiệm trái dấu 

<=> m + 2 < 0 <=> m < - 2 

Kết hợp với TH1 nữa nhé!

+)  Phương trình (1) có 4 nghiệm 

<=> phương trình 2 có 2 nghiệm dương 

<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)

NV
30 tháng 4 2021

- Với \(m=0\Rightarrow x=-2\) thỏa mãn

- Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)

Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương

Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ

\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)

\(\Rightarrow m=2k\left(k+1\right)\)

Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ