K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

28 tháng 2 2020

a, xét tam giác ABM và tam giác KBM có :BM chung

góc ABM = góc KBM do BM là pg của góc ABC (gt)

AB = BK (gt)

=> tam giác ABM = tma giác KBM (c-g-c)

b, tam giác ABM = tam giác KBM (Câu a)

=> góc MAB = góc MKB (đn)

góc MAB = 90

=> góc MKB = 90

xét tam giác EMA và tam giác CMK có : góc CMK = góc EMA (đối đỉnh)

MA = MK do tam giác ABM = tam giác KBM (câu a)

góc MAE = góc MKC  = 90

=> tam giác EMA = tam giác CMK (cgv-gnk)

=> MA = MC (đn)

=>  tam giác EMC cân tại M (đn)

c, tam giác ABC vuông tại A (gt) => góc ABC + góc ACB = 90 (đl)

góc ACB = 30 (gt)

=> góc ABC = 60  (1)

BA = BK (gt)

AE = CK do tam giác MEA = tam giác MCK (câu b)

AE + AB = BE

CK + KB = BC 

=> BE = BC

=> tam giác BEC cân tại B (đn) và (1)

=> tam giác BEC đều (dh)

28 tháng 2 2020

Bạn kẻ hình giùm mk nha

13 tháng 8 2020

a, xét tam giác ABM và tam giác KBM có :

BM chung
góc ABM = góc KBM do BM là pg của góc ABC (gt)
AB = BK (gt)
=> tam giác ABM = tam giác KBM (c-g-c)
b, tam giác ABM = tam giác KBM (Câu a)
=> góc MAB = góc MKB (đn)
góc MAB = 90
=> góc MKB = 90
xét tam giác EMA và tam giác CMK có :

góc CMK = góc EMA (đối đỉnh)
MA = MK do tam giác ABM = tam giác KBM (câu a)
góc MAE = góc MKC = 90
=> tam giác EMA = tam giác CMK (cgv-gnk)
=> MA = MC (đn)

=> tam giác EMC cân tại M (đn)
c, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (đl)
góc ACB = 30 (gt)
=> góc ABC = 60 (1)
BA = BK (gt)
AE = CK

do tam giác MEA = tam giác MCK (câu b)
AE + AB = BE
CK + KB = BC
=> BE = BC
=> tam giác BEC cân tại B (đn) và (1)
=> tam giác BEC đều (dh)

:)

31 tháng 1 2019

a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM

suy ra 2 tam giác trên bằng nhau

hok tốt

1 tháng 2 2019

tu ve hinh : 

xet tamgiac ABM va tamgiac KBM co :  MB chung

goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)

AB = AK (gt)

=> tammgiac ABM = tamgiac KBM (c - g - c)

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA

 

a: AB<AC

=>góc C<góc B

b: Xét ΔBAM vuông tại A và ΔBEM vuông tại E có

BM chung

BA=BE

=>ΔBAM=ΔBEM

c: Xét ΔBNC có

NE,CA là đường cao

NE cắt CA tại M

=>M là trực tâm

=>BM vuông góc CN