tìm một số tự nhiên có 2 chữ số,biết rằng nếu đổi 2 chữ số của nó ta được số có 2 chữ số lớn hơn ban đầu 45 đơn vị (Mong các bn hãy giải đầy đủ hộ mik nha,mik cảm ơn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm là $\overline{ab}$ . Điều kiện:..............
Theo bài ra:
$a+b=6(1)$
$\overline{ab}=\overline{ba}+18$
$10a+b=10b+a+18$
$9a-9b=18$
$a-b=2(2)$
Từ $(1); (2)\Rightarrow a=4; b=2$
Vậy số cần tìm là $42$
Gọi số cần tìm là ab=10a+b. Theo bài ra ta có: a+b=9 (1)
Khi đổi vị trí 2 số, được số mới là ba=10b+a
=> 10b+a=10a+b+63 => 9b=9a+63 => b=a+7
Thay vào (1), ta được: a+a+7=9 => 2a=2 => a=1; b=1+7=8
Số cần tìm là: 18
Gọi số lúc đầu là ab, ta có:
ba-ab=63..
==>10b+a-(10a+b)=63.
=>10b-b+a-10a=63.
=>9b-9a=63.
=>9(b-a)=63
=>b-a=7.
Mà a+b=9.
=>a=1;b=8.
Vậy số cần tìm là 18
Gọi số đó là ab
Ta có a+b=6
Lại có 10a + b - 10b - a=18
=>a=4, b=2
Vậy số cần tìm là 42
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Gọi số đó là ab
Theo đề bài ta có :
a + b = 11
Và ba - ab = 45
=> 10b + a - 10a - b = 45
=> 9b - 9a = 45
=> b - a = 5
Mà a + b = 11
=> b = 8, a = 3
=> Số đó là 38
Gọi số tự nhiên cần tìm là \(\overline{ab}\) ( 0< a; b< 9)
=> Sau khi đổi chỗ ta có số: \(\overline{ba}\)
Theo bài ra ta có: \(\overline{ba}-\overline{ab}=45\)
<=> b.10 + a - a.10 -b = 45
<=> 9 ( b - a ) = 45
<=> b - a = 5
+) a = 1 => b = 6
+) a = 2 => b = 7
+) a = 3 => b = 8
+) a = 4 => b = 9
+) a >4 => b >9 loại
Vậy:...