K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Ta xét : Các số nguyên tố nhỏ hơn 10 là : 2;3;5;7

Như vậy r thuộc {2;3;5;7}

Với r = 2 => A = 32 chia hết cho 2  < Loại>

Với r = 3 => A = 33 chia hết cho 3 < Loại>

Với r = 5 => A = 35 chia hết cho 5 < Loại>

Với r=7 => A = 37 < Chọn >

Vậy A = 37

26 tháng 2 2020

bạn thử từng só dư một là đc mà

22 tháng 7 2015

Bài 1 :

Gọi p là số nguyên tố phải tìm.

Ta có: p chia cho 60 thì số dư là hợp số $⇒$⇒ p = 60k + r = 22.3.5k + r  với k,r $∈$∈ N ; 0 < r < 60 và r là hợp số.

Do p là số nguyên tố nên r không chia hết các thừa số nguyên tố của p là 2 ; 3 và 5.

Chọn các hợp số nhỏ hơn 60, loại đi các số chia hết cho 2 ta có tập hợp A =  {9 ; 15 ; 21 ; 25 ; 27 ; 33 ; 35 ; 39 ; 45 ; 49 ; 21 ; 55 ; 57}

Loại ở tập hợp A các số chia hết cho 3 ta có tập hợp B = {25 ; 35 ; 49 ; 55}

Loại ở tập hợp B các số chia hết cho 5 ta có tập hợp C = {49}

Do đó r = 49. Suy ra p = 60k + 49. Vì p < 200 nên k = 1, khi đó p = 60.1 + 49 = 109 hoặc k = 2, khi đó p = 60.2 + 49 = 169.

Loại p = 169 = 132 là hợp số  chỉ có p = 109.

Số cần tìm là 109.

22 tháng 7 2015

2)Gọi số nguyên tố đó là n, ta có n=30k+r (r<30, r nguyên tố) 
Vì n là số nguyên tố nên r không thể chia hết cho 2,3,5 
Nếu r là hợp số không chia hết cho 2,3,5 thì r nhỏ nhất là 7*7 = 49 không thỏa mãn 
Vậy r cũng không thể là hợp số 
Kết luận: r=1 

19 tháng 11 2015

1)

a)3

b)1

 

30 tháng 8 2021

BAI NAY DE NHU  AN BANH DO BAY DAO HOC LOP MAY

31 tháng 10 2016

a)P=1

b)P=3

B2:960

B3:418

31 tháng 10 2016

B2:960

a,a là số nguyên tố ⇒4a+11≥4.2+11⇒4a+11≥4.2+11 (Vì 4a+11 nhỏ nhất khi a nhỏ nhất ⇒a=2⇒a=2 )

Các số nguyên tố bé hơn 30 và lớn hơn 15 là :19;23;29

Xảy ra 3 trường hợp:

Nếu 4a+11=19⇒a=24a+11=19⇒a=2 (thoả mãn)

Nếu 4a+11=23⇒a=34a+11=23⇒a=3 (thoả mãn)

Nếu 4a+11=29⇒a=4,54a+11=29⇒a=4,5 (không thoả mãn)

Vậy a=3 hoặc a=2

b,Với P=3p+2=5p+4=7p+2 và P+4 là số nguyên tố

Với P>3 có 3k+1 hoặc 3k+2

+ Nếu P=3k+1 p+2=3k+1+2=3k+33( loại)

+ Nếu P=3k+2 p+4 =3k+2+4=3k+63(loại)

Vậy P=3

c,Nếu p = 3k (k  N ) và p là số nguyên tố

=> k = 1 => p = 3

=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)

=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)

Nếu p = 3k + 1

=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5)  chia hết cho 3 (loại)

Nếu p = 3k + 2 

=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4)  chia hết cho 3 (loại)

Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố

13 tháng 6 2019

a)  Theo bài ra ta có :

4p + 11 < 30 

=> 4p < 30 - 11

=> 4p < 19

=> p < 19 : 4

=> p < 4,75

Vì p là số nguyên tố 

=> p \(\in\){2;3}

Vậy p \(\in\){2;3}

b) +) Nếu p = 2

=> p + 2 = 2 + 2 = 4 (hợp số) 

=> p = 2 loại 

 +) Nếu p = 3

=> p + 2 = 3 + 2 = 5 (số nguyên tố) => chọn

     p + 4 = 3 + 4 = 7 (số nguyên tố) => chọn 

=> p = 3 chọn

+) Nếu p > 3

=> p = 3k + 1 hoặc p = 3k + 2 (k \(\in\)N*)

Nếu p = 3k + 1

=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3k + 3.1 = 3(k+1) \(⋮\)3 (hợp số)

=> p = 3k + 1 loại

Nếu p = 3k + 2

=> p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3(k + 2) \(⋮\)3 (hợp số)

=> p = 3k + 2 loại

Vậy p = 3

c)  +) Nếu p = 2

=> p + 10 = 2 + 10 = 12 (hợp số) 

=> p = 2 loại 

 +) Nếu p = 3

=> p + 10 = 3 + 10 = 13 (số nguyên tố) => chọn

     p + 14 = 3 + 14 = 17 (số nguyên tố) => chọn 

=> p = 3 chọn

+) Nếu p > 3

=> p = 3k + 1 hoặc p = 3k + 2 (k \(\in\)N*)

Nếu p = 3k + 1

=> p + 14 = 3k + 1 + 14 = 3k + 15 = 3k + 3.5 = 3(k+5) \(⋮\)3 (hợp số)

=> p = 3k + 1 loại

Nếu p = 3k + 2

=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3k + 3.4 = 3(k + 4) \(⋮\)3 (hợp số)

=> p = 3k + 2 loại

Vậy p = 3

các bạn làm ơn giúp mik

4 tháng 7 2017

4a+11 la so ngto suy ra 4a+11 la so le

suy ra 4a la so chan

Vi 4a+11 < 30 suy ra 4a < 19 suy ra a co the = 1,2,3,4

Ma 4a+11 la so ngto suy ra a=2