Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ACM=1/2*sđ cung AM=90 độ
b: góc ADB=góc AEB=90 độ
=>ABDE nội tiếp
ta có
\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)
=> \(\widehat{AEH}+\widehat{AFH}=180^0\)
=> tứ giác AEHF nội tiếp được nhé
ta lại có AEB=ADB=90 độ
=> E , D cùng nhìn cạnh AB dưới 1 góc zuông
=> tứ giác AEDB nội tiếp được nha
b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)
hai tam giác zuông ADB zà ACK có
ABD = AKC ( góc nội tiếp chắn cung AC )
=> tam giác ABD ~ tam giác AKC (g.g)
c) zẽ tiếp tuyến xy tại C của (O)
ta có OC \(\perp\) Cx (1)
=> góc ABC = góc DEC
mà góc ABC = góc ACx
nên góc ACx= góc DEC
do đó Cx//DE ( 2)
từ 1 zà 2 suy ra \(OC\perp DE\)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét ΔABE vuông tại E và ΔHCE vuông tại E có
\(\widehat{ABE}=\widehat{HCE}\)
Do đó: ΔABE\(\sim\)ΔHCE
Suy ra: AB/HC=BE/CE
hay \(AB\cdot CE=BE\cdot HC\)