\(7\left(2x-4\right)>1-4x\) giải bất pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}4x^2+2y+2\ge0\\3x+y\ge0\end{matrix}\right.\)
Ta có : \(\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\)
\(\Leftrightarrow\dfrac{3}{\sqrt{4x^2+3}+2x}.\dfrac{3}{\sqrt{y^2-2y+4}+y-1}=3\)
\(\Leftrightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=3\)
\(\Rightarrow\left(\sqrt{4x^2+3}+2x\right)\left(\sqrt{y^2-2y+4}+y-1\right)=\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)\)
\(\Leftrightarrow2x\sqrt{y^2-2y+4}+\left(y-1\right).\sqrt{4x^2+3}=0\)
\(\Leftrightarrow2x\sqrt{y^2-2y+4}=\left(1-y\right).\sqrt{4x^2+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2.\left(y^2-2y+4\right)=\left(y^2-2y+1\right).\left(4x^2+3\right)\\2x.\left(1-y\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=y^2-2y+1\\2x\left(1-y\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x=y-1\\2x=1-y\end{matrix}\right.\\2x\left(1-y\right)\ge0\end{matrix}\right.\)
Với 2x = 1 - y
Khi đó ta có \(\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\)
\(\Leftrightarrow\sqrt{4x^2-4x+4}-\sqrt{x+1}=2x+1\) (ĐK : \(x\ge-1\))
\(\Leftrightarrow2\sqrt{x^2-x+1}-\sqrt{x+1}=2x+1\)
\(\Leftrightarrow2\left(\sqrt{x^2-x+1}-1\right)=2x+\sqrt{x+1}-1\)
\(\Leftrightarrow\dfrac{2x\left(x-1\right)}{\sqrt{x^2-x+1}+1}=2x+\dfrac{x}{\sqrt{x+1}+1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2x-2}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}\left(1\right)\end{matrix}\right.\)
Phương trình (1)
<=> \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)
Xét vế trái : \(\dfrac{2\left(x+1\right)}{\sqrt{x^2-x+1}}=\sqrt{\dfrac{4x^2+4x+1}{x^2-x+1}}=\sqrt{\dfrac{5x^2-5x+5-x^2+9x-4}{x^2-x+1}}\)
\(=\sqrt{5-\dfrac{x^2-9x+4}{x^2-x+1}}< \sqrt{5}\) (2)
Lại có \(2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{4}{\sqrt{x^2-x+1}}\)
\(=2+\dfrac{1}{\sqrt{x+1}+1}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}+\dfrac{1}{\sqrt{x^2-x+1}}\)
\(\ge2+\dfrac{\left(1+1+1+1+1\right)^2}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}=2+\dfrac{25}{\sqrt{x+1}+1+4\sqrt{x^2-x+1}}\)
Dấu "=" khi \(\dfrac{1}{\sqrt{x+1}+1}=\dfrac{1}{\sqrt{x^2-x+1}}\Leftrightarrow\left[{}\begin{matrix}x\approx3,498374325\\x\approx-0,7385661113\end{matrix}\right.\)
Khi đó \(VP\ge3,6\) (3)
Từ (3) và (2) => (1) vô nghiệm
Vậy x = 0 => y = 1
Với 2x = y - 1 kết hợp điều kiện 2x(1 - y) \(\ge0\)
ta được x = 0 ; y = 1
Vậy (x ; y) = (0;1)
\(7\left(2x-4\right)>1-4x\)
\(\Leftrightarrow14x-28-1+4x>0\)
\(\Leftrightarrow x>\dfrac{29}{18}\)
sao ko thay --1 thành> gải thích