K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

gọi A=a2−4ab+5b2+10a−22b+28

=(a2−4ab+4b2)+(b2−2b+1)+(10a−20b)+27

=(a−2b)^2+10(a−2b)+25+(b−1^)2+2

 =(a−2b+5)^2+(b−1)^2+2

Vì (a−2b+5)^2≥0và(b−1)^2≥0

=>(a−2b+5)2+(b−1)2+2≥2

Để dấu =xảy ra thì:

     {(a−2b+5)^2=0và(b−1)^2=0

⇔{a=2b−5vàb=1

⇔{a=−3 và b=1

Vậy min=2 khi (a;b)=(−3;1).

19 tháng 10 2021

\(A=a^2-4ab+5b^2+10a-22b+28\)

\(=\left(a^2-4ab+4b^2\right)+\left(b^2-2b+1\right)+\left(10a-20b\right)+27\)

\(=\left(a-2b\right)^2+10.\left(a-2b\right)+25+\left(b-1\right)^2+2\)

\(=\left(a-2b+5\right)^2+\left(b-1\right)^2+2\)

Ta có: \(\hept{\begin{cases}\left(a-2b+5\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow\left(a-2b+5\right)^2+\left(b-1\right)^2+2\ge2\)

Dấu '' = '' xảy ra khi: 

\(\hept{\begin{cases}\left(a-2b+5\right)^2=0\\\left(b-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}a-2b+5=0\\b-1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=-3\\b=1\end{cases}}\)

Vậy giá trị nhỏ nhất của \(A=2\) khi \(\hept{\begin{cases}a=-3\\b=1\end{cases}}\)

NV
23 tháng 11 2019

Ta có:

\(VT=a^2+4b^2+25-4ab+10a-20b+\left(b^2-2b+1\right)+2\)

\(VT=\left(a-2b+5\right)^2+\left(b-1\right)^2+2\ge2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=-3\\b=1\end{matrix}\right.\)

b: \(B\ge2021\forall x,y\)

Dấu '=' xảy ra khi x=y=3

20 tháng 1 2018

MK sửa lại đề là tìm giá trị lớn nhất nha.  bn tham khảo: 

                                                  BÀI LÀM.

\(F=-a^2-5b^2-2a+4ab+10b-6\)

\(=-\left(a^2-4ab+4b^2\right)-\left(2a-4b\right)-1-\left(b^2-6b+9\right)+4\)

\(=-\left(a-2b\right)^2-2\left(a-2b\right)-1-\left(b-3\right)^2+4\)

\(=-\left(a-2b-1\right)^2-\left(b-3\right)^2+4\)  \(\le\)\(4\)

Dấu  "="  xảy ra   \(\Leftrightarrow\)\(\orbr{\begin{cases}a-2b-1=0\\b-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=7\\b=3\end{cases}}\)

Vậy...

p/s:  tham khảo nhé. mik ko chắc là đúng đâu

11 tháng 4 2020

C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7

dấu = xảy ra khi a-2b=0      

                            b-1=0

<=>a=2;b=1

..................................

20 tháng 7 2015

Cách làm các bài dạng trên.

+Cho dễ nhìn, chuyển thành tìm GTNN của \(M=a^2+5b^2+2a-4ab-10b+6\)

+Viết lại \(M=a^2-\left(4b-2\right)a+5b^2-10b+6\)

Đây là một phương trình bậc 2 ẩn a, tham số b. M đạt GTNN khi \(a=\frac{4b-2}{2.1}=2b-1\text{ (1)}\)

(Nếu là hàm số \(y=ax^2+bx+c\text{ (}a>0\text{) thì }y\text{ đạt GTNN tại }x=-\frac{b}{2a}\))

+Viết lại \(M=5b^2-\left(4a+10\right)b+a^2+2a+6\)

Đây là một phương trình bậc 2 ẩn b, tham số a. M đạt GTNN khi \(b=\frac{4a+10}{2.5}=\frac{2a+5}{5}\Leftrightarrow2a+5=5b\text{ (2)}\)

Từ (1) và (2) suy ra, M đạt GTNN tại \(a=2b-1;\text{ }2a+5=5b\Rightarrow a=5;\text{ }b=3\)

Giờ thì làm thôi .......

\(M=-A=\left(a^2+4b^2+1-4ab+2a-4b\right)+b^2-6b+9-4\)

\(=\left(a-2b+1\right)^2+\left(b-3\right)^2-4\ge-4\)

\(\Rightarrow A\le4\)

Dấu "=" xảy ra khi \(a-2b+1=0\text{ và }b-3=0\Leftrightarrow a=5\text{ và }b=3\)

Kết luận: GTLN của A là 4.

18 tháng 1 2022

Em gõ Latex nha mn nhìn ko ra nha em

18 tháng 1 2022

a+b≤1. tìm gtnn của :1/(a^2+b^2)+(2012ab+1)/ab+4ab