K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Vì f(x) = g(x) 

suy ra 2x=-x+3

suy ra 3x=3

suy ra x=1

24 tháng 12 2021

a: f(-3)=10

f(0)=-8

f(1)=-6

f(2)=0

b: f(x)=0

=>(x-2)(x+2)=0

=>x=2 hoặc x=-2

10 tháng 5 2019

a) Để \(f\left(x\right)=3\)

\(\Leftrightarrow\frac{2x+1}{2x+3}=3\)

\(\Leftrightarrow3.\left(2x+3\right)=2x+1\)

\(\Leftrightarrow6x+9=2x+1\)

\(\Leftrightarrow6x-2x=1-9\)

\(\Leftrightarrow4x=-8\)

\(\Leftrightarrow x=-2\)

10 tháng 5 2019

Để f(x) nguyên

 \(\Leftrightarrow2x+1⋮2x+3\)

\(\Leftrightarrow2x+3-2⋮2x+3\)

mà \(2x+3⋮2x+3\)

\(\Rightarrow2⋮2x+3\)

\(\Rightarrow2x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng rồi tìm x nguyên nhé 

                        

28 tháng 12 2017

mình đaNG cần gấp giúp mình với

18 tháng 1 2018

giúp làm cái jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

12 tháng 6 2018

12 tháng 1 2018

Đáp án D

- Phương pháp: Sử dụng công thức tính đạo hàm của tích Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

- Cách giải:

+ Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

23 tháng 6 2017

NV
20 tháng 1 2021

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)