{ u1+u7=8
{ u4+u5=11
Tính số hạng đầu, công sai và S=u8+u10+...+u36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Ta có : u1 + u4 + u7 + u10 + u13 + u16 = 147
⇔ u1 + u1 + 3d + u1 + 6d + u1 + 9d + u1 + + 12d + u1 + 15d = 147
⇔ 6 u1 + 45d = 147 ⇔ 2 u1 + 15d = 49
Ta có: u6 + u11 = u1 + 5d + u1 + 10d = 2u1 + 15d = 49
Ta có: u1 + u6 + u11 + u16 = u1 + u1 + 5d + u1 + 10d + u1 + 15d = 4u1 + 30d
= 2(2u1 + 15d) = 2.49 = 98.
\(\left\{{}\begin{matrix}u_1+d=3\\u_1+9d=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=\dfrac{21}{4}\\d=-\dfrac{9}{4}\end{matrix}\right.\)
\(S_{20}=\dfrac{21}{4}.20+\dfrac{19.20}{2}.\left(-\dfrac{9}{4}\right)=-\dfrac{645}{2}\)
Ta có:
Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):
(1) ⇔ 2u1(1 + 8 - 4) = 10 ⇔ u1 = 1
Vậy u1 = 1 và q = 2
Đáp án A
u 2 − u 3 + u 5 = 10 u 4 + u 6 = 26 ⇒ u 1 + 3 d = 10 2 u 1 + 8 d = 26 ⇒ u 1 = 1 d = 3 ⇒ S = 2023736
\(\left\{{}\begin{matrix}u_1+u_1+6d=8\\u_1+3d+u_1+4d=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u_1+6d=8\\2u_1+7d=11\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}d=3\\u_1=-5\end{matrix}\right.\)
\(S=u_1+7d+u_1+9d+...+u_1+35d\)
\(S=15u_1+\left(7+9+...+35\right)d=15u_1+308d=849\)