K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:1) Tìm x, biết: \(4\frac{5}{9}\): \(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\): \(\left(-21\frac{1}{2}\right)\)2) Tính giá trị của biểu thức:\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 03) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).Bài 2:a) Tìm x,...
Đọc tiếp

Bài 1:

1) Tìm x, biết: \(4\frac{5}{9}\)\(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\)\(\left(-21\frac{1}{2}\right)\)

2) Tính giá trị của biểu thức:

\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 0

3) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).

Bài 2:

a) Tìm x, biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|\)+ ........ + \(\left|x+\frac{1}{110}\right|=11x\)

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.

Bài 3: Cho các đa thức:

\(f\left(x\right)\)\(3x^4+2x^3-5x^2+7x-3\)và \(g\left(x\right)=x^4+6x^3-15x^2-6x-9\)

a) Tìm đa thức \(h\left(x\right)=3f\left(x\right)-g\left(x\right)\)

b) Tìm nghiệm của đa thức \(h\left(x\right)\).

Bài 4:

a) Tìm x, y, z biết: \(\frac{3x}{8}=\frac{y}{4}=\frac{3z}{16}\)và \(2x^2+2y^2-z^2=10\)

b) Tìm số tự nhiên a nhỏ nhất khác 0 sao cho khi chia a cho \(\frac{8}{9}\)và khi chia a cho \(\frac{12}{17}\)đều được kết quả là số tự nhiên.

Bài 5: Cho \(\Delta ABC\)vuông tại A, ( AB < AC ). Gọi M là trung điểm của BC, từ M kẻ đường vuông góc với tia phân giác của góc BAC tại I, cắt AB và AC lần lượt tại D, E. Từ B kẻ đường thẳng song song với AC cắt DE tại K.

a) Tính góc BKD.

b) Chứng minh rằng: \(AE=\frac{AB+AC}{2}\).

c) Kẻ AH vuông góc với BC. Biết BH = 18 cm, CH = 32 cm. Tính độ dài AB và AC.

d) Nếu trên hình vẽ so với thực tế có tỉ lệ xích là 1 : 100000. Khi đặt tại H một máy phát sóng truyền thanh có bán kính hoạt động 30 km thì các thành phố tại địa điểm A và C có nhận được tín hiệu không ? Vì sao ?

0
25 tháng 4 2018

a) x = 99/20

b) x = 7

c) x = 2

( chỉ lm đc đến đó thui nk )

18 tháng 4 2018

a) \(x-\frac{5}{7}=\frac{1}{9}\Rightarrow x=\frac{1}{9}+\frac{5}{7}\Rightarrow x=\frac{52}{63}\)

b) \(\frac{-3}{7}-x=\frac{4}{5}+\frac{-2}{3}\Rightarrow\frac{-3}{7}-x=\frac{2}{15}\Rightarrow x=\frac{-3}{7}-\frac{2}{15}\Rightarrow x=\frac{-59}{105}\)

c) \(x-\frac{1}{5}=\frac{2}{7}.\frac{-11}{5}\Rightarrow x-\frac{1}{5}=\frac{-22}{35}\Rightarrow x=\frac{-22}{35}+\frac{1}{5}\Rightarrow x=\frac{-3}{7}\)

d) \(\frac{x}{182}=\frac{-6}{14}.\frac{35}{91}\Rightarrow\frac{x}{182}=\frac{-15}{91}\Rightarrow x=\frac{\left(-15\right).182}{91}\Rightarrow x=-30\)

2 tháng 2 2019

\(H=\frac{1}{100}-\frac{1}{100\cdot99}-\frac{1}{99\cdot98}-...-\frac{1}{2\cdot1}\)

\(U=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+...+\frac{1}{2\cdot1}\right)\)

\(U=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\right)\)

\(H=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(HU=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(UH=\frac{1}{100}-1+\frac{1}{100}\)

\(HU=\frac{2}{100}-1=-\frac{49}{50}\)

2 tháng 2 2019

Chậc =)))

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

4 tháng 7 2016

a/ \(\frac{6}{7}x=\frac{18}{23}\)

\(x=\frac{18}{23}:\frac{6}{7}=\frac{21}{23}\)

b/ \(2\frac{1}{2}x=\frac{5}{6}\)

\(=>\frac{5}{2}x=\frac{5}{6}\)

\(x=\frac{5}{6}:\frac{5}{2}=\frac{1}{3}\)

c/\(x:2\frac{3}{4}=9\frac{5}{8}\)

\(x:\frac{11}{4}=\frac{77}{8}\)

\(x=\frac{77}{8}\cdot\frac{11}{4}=\frac{847}{32}\)

d/\(7\frac{1}{7}\cdot\frac{1}{7}\cdot x=22\frac{1}{8}\)

\(\frac{50}{49}x=\frac{177}{8}\)

\(x=\frac{177}{8}:\frac{50}{49}=\frac{8673}{400}\)

4 tháng 7 2016

\(a,\frac{6}{7}.x=\frac{18}{23}\) \(\Rightarrow x=\frac{18}{23}:\frac{6}{7}=\frac{18}{23}.\frac{7}{6}=\frac{21}{23}\)

\(b,2\frac{1}{2}.x=\frac{5}{6}\Rightarrow\frac{5}{2}.x=\frac{5}{6}\Rightarrow x=\frac{5}{6}:\frac{5}{2}=\frac{5}{6}.\frac{2}{5}=\frac{1}{3}\)

\(c,x:2\frac{3}{4}=9\frac{5}{8}\Rightarrow x:\frac{11}{4}=\frac{77}{8}\Rightarrow x=\frac{77}{8}.\frac{11}{4}=\frac{847}{32}\)

\(d,7\frac{1}{7}.\frac{1}{7}.x=22\frac{1}{8}\Rightarrow\frac{50}{49}.x=\frac{177}{8}\Rightarrow x=\frac{177}{8}:\frac{50}{49}=\frac{177}{8}.\frac{49}{50}=\frac{8673}{400}\)

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}