Cho (O; R) , một đường thẳng d cắt đường tròn (O) tại C và D, lấy điểm M trên đường thẳng d sao cho D nằm giữa C và M, Qua M vẽ tiếp tuyến MA, MB với đường tròn . Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng:
a) AB vuông góc với OM.
b) Tích OE . OM không đổi.
c) Khi M di chuyển trên đường thẳng d thì đường thẳng AB đi qua một điểm cố định.
a) theo tính chất của hai tiếp tuyến cắt nhau , ta có :
AM = MB
Mà OA = OB ( = R )
\(\Rightarrow\)OM thuộc đường trung trực của AB
\(\Rightarrow\)OM \(\perp\)AB
b) Áp dụng hệ thức lượng vào \(\Delta AOM\),ta có :
\(OE.OM=OA^2=R^2\) ( không đổi i)
c) gọi F là giao điểm của AB với OH
Xét \(\Delta OEF\)và \(\Delta OHM\)có :
\(\widehat{HOE}\left(chung\right)\); \(\widehat{OEF}=\widehat{OHM}\left(=90^o\right)\)
\(\Rightarrow\Delta OEF~\Delta OHM\left(g.g\right)\)
\(\Rightarrow\frac{OE}{OH}=\frac{OF}{OM}\Rightarrow OF.OH=OE.OM=R^2\Rightarrow OF=\frac{R^2}{OH}\)
Do đường thẳng d cho trước nên OH không đổi
\(\Rightarrow\)OF không đổi
Do đó đường thẳng AB luôn đi điểm F cố định