K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

 

25 tháng 3 2021

IV

1 to have

2 making 

3 leaving

4 seeing

5 to get

6 arguing - working

7 to have

8 to seeing

9 not touching

10 to disappoint

V

1 on - on

2 at - at

3 in - in

4 at

5 at 

6 in

7 in - in

8 at - in

9 in - at

10 in

VI

1 are - reach

2 comes

3 flies

4 have just decided - will undertake

5 would take

6 was

8 am attending - was attending

9 arrived - was waiting

10 had lived

VII

1 send - will receive

2 will - improve - do

3 will - has

4 doesn't phone - will leave

 

25 tháng 3 2021

tờ 2

5 don't study - won't oas

VIII

1 had - would learn

2 told - would be

3 lived - would do

4 would help - knew

5 would buy - had

IX

1 went

2 were

3 wrote

4 could

5 bought

6 studied

7 went

8 would stop

9 were

10 lead

X

1 He opened the window in order to let fresh air in

2 I took my camera so that I could take some phôt

3 He studied really hard in order to get better marks

4 Jason learns Chinese to work in China

5 I've collected money in order that I will buy a new car

XI

1 A new museum has been built in the city center by the council

2The explosion had been caused by a bomb

3 Their flat was broken into last month

4 Jane won't be invited to his birthday party by him

 

16 tháng 11 2021

Câu 1.

Tờ vé số có dạng \(\overline{a_1a_2a_3a_4a_5a_6}\in A=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)

\(;a_i\ne a_j\)

Chọn \(a_1\ne0\) nên \(a_1\) có 9 cách chọn.

5 số còn lại là chỉnh hợp chập 5 của 8 số còn lại \(\in A\backslash\left\{a_1\right\}\)

\(\Rightarrow\)Có \(A_8^5\) cách.

Vậy có tất cả \(A_8^5\cdot9=60480\) vé số.

 

 

16 tháng 11 2021

c

Bài 9:

a: Ta có: \(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow x-5=0\)

hay x=5

b: ta có: \(4x^2-4x=-1\)

\(\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow2x-1=0\)

hay \(x=\dfrac{1}{2}\)

c: Ta có: \(\left(2x-1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left(3x-2\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(3x-2-2x+1\right)\left(3x-2+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{5}\end{matrix}\right.\)

Bài 7a đề sai bạn nhé.

undefined

 

Bài 7a đề sai bạn nhé

undefined

Bài 8:

a: \(73^2-27^2=\left(73-27\right)\left(73+27\right)=4600\)

b: \(63^2-27^2+72^2-18^2\)

\(=\left(63-18\right)\left(63+18\right)+\left(72-27\right)\left(72+27\right)\)

\(=45\cdot\left(63+18+72+27\right)\)

\(=45\cdot180=8100\)

b: Ta có: \(\left(x+y\right)^2-x^2+4xy-4y^2\)

\(=\left(x+y\right)^2-\left(x-2y\right)^2\)

\(=\left(x+y-x+2y\right)\left(x+y+x-2y\right)\)

\(=3y\cdot\left(2x-y\right)\)

c: Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=2y^3+6x^2y\)

\(=2y\left(3x^2+y^2\right)\)